TI代理,常备极具竞争力的充足现货
TI官网今日有何新闻? TI新闻头条报导
通过更高的输出功率和H是通过更高的输出功率和H级控制创造的
(2026年2月22日更新)

随着汽车油耗标准的不断提高(根据美国环境保护署的规定,每加仑汽油的行驶里程需要在2026年提高到40英里),汽车音响设计师面临的挑战是如何提供身临其境的音频体验,减轻车辆重量,提高整体效率。

南皇电子专注于整合中国优质电子TI代理商国内领先的现货资源,提供合理的行业价格、战略备货、快速交付控制TI芯片供应商,轻松满足您的需求TI芯片采购需求.(http://www.litesemi.com/)

如果需要设计汽车外部放大器,音频系统架构可以通过增加输出功率、使用更高阻抗的扬声器和H控制来升级,从而增强用户体验。本文将详细介绍每种方法,包括这些方法对音频系统重量和性能的影响。

使用更高的电源电压和更高的输出电流来支持更高的输出功率

除了原始设备制造商 (OEM) 除了减轻车辆重量外,消费者还希望获得出色的音频性能,并在车内享受身临其境的音频体验。为了开发能带来这种体验的系统,设计师喜欢集成性能更强的低音炮:它们可以继续输出震耳欲聋的低音,并提供更大的动态范围(分贝测量的最低和最高之间的差异)。

为了增加动态范围和输出功率,可以考虑增加输入电源电压。表1显示,为了在扬声器阻抗增加时保持75W输出功率所需的电源电压和输出电流值。

表1 各通道需求(相同功率)之间的关系


输出功率相同

输出功率 (W)

75

75

75

扬声器阻抗 (?)

2

4

8

电源电压 (V)

20

26

36

输出电流 (A)

8.7

6.1

4.4

表2显示了增加功率需求与电源电压/输出电流的相关性。在这种情况下,为了提高输出功率,需要在相同的扬声器阻抗下增加电源电压和输出电流。

表2 各通道需求之间的关系(增加功率)


输出功率增加 (4?)

输出功率增加 (8?)

输出功率 (W)

75

100

120

75

100

120

扬声器阻抗 (?)

4

4

4

8

8

8

电源电压 (V)

26

31

34

36

42

45

输出电流 (A)

6.1

7.1

7.8

4.4

5.0

5.5

为什么高阻抗扬声器能减轻整体重量?

如表1所示,使用高阻抗扬声器的一个优点是,在保持相同输出功率的同时,输出电流显著下降。此外,由于所需输出电流的降低,铜线的相对尺寸(直径)也可以降低。例如,在相同的输出功率下,与4Ω或2Ω与扬声器相比,8Ω直径较小的铜线可用于扬声器,有助于减轻音频电缆的重量。图1中显示的简化安装图显示了一个六扬声器汽车音频系统。每扇门都有一个中音扬声器,后面有两个额外的扬声器。大约76英尺的铜线连接所有扬声器。

图1 连接典型的六扬声器汽车音频系统所需的铜线长度

增加扬声器阻抗的一个好处是可以降低电缆直径。此外,将所有扬声器连接到音频外放大器的布线通常非常轻,因此可以真正减轻音频系统的整体重量。

实施H控制,优化系统效率,进一步减轻重量

,在传统的音频系统中,为了提供音频负载所需的峰值功率,所有扬声器的音频放大器的电源电压通常被标记为PVDD)设置为所需的最高电压。


图4 不使用 H 减少整体功率损失

为了进一步说明这一点,让我们看一下TAS6584-Q音频放大器和LM5123-Q启用和禁用1升压控制器电源 H 类控制时的热像仪图像,并比较其热特性。 5 展示了 H 如何显著降低类控制的总热负荷?

,H 提高类控制效率(通过降低功率损耗)有助于降低热负荷,从而选择较小的散热器来释放内部热量。

图5 不采用和采用 H 控制时的温度对比

表4 LM15123-Q1 和 TAS6584-Q1 热成像温度比较表

波形

配置

LM5123 MOSFET 温度 (°C)

TAS6584-Q1 电感器温度 (°C)

1kHZ 900ms 1/8功率,100ms 全功率

采用H类

56.6°TI芯片C

56.4°C

不采用H类

76.7°C

76.2°C

差异

20.1°C

19.8°C

结语

希望本文清楚地介绍了如何使用更高阻抗的扬声器和实施 H 类控制可以帮助您开发更轻的音频系统,以及如何将外部放大器转换为延长车辆范围。这将帮助您在整体音频设计中添加更多的扬声器通道,并为现有的汽车扬声器增加每个通道的整体平均输出功率。

TI公司被热门关注的产品型号
MSP430FG438:微控制器 (MCU) 和处理器
TI 具有 48KB 闪存、2KB SRAM、12 位 ADC、双通道 DAC、DMA、3 个运算放大器和 128 段 LCD 的 8MHz MCU
MSP430F5508:微控制器 (MCU) 和处理器
TI 具有 16KB 闪存、4KB SRAM、10 位 ADC、比较器、DMA、UART/SPI/I2C、USB 和硬件乘法器的 25MHz MCU
SN74HC541:逻辑和电压转换
TI 具有三态输出的 8 通道、2V 至 6V 缓冲器
TLV3701-Q1:放大器
TI 汽车类单通道毫微功耗推挽式比较器
BQ27410-G1:电源管理
TI 具有直接电池连接功能的系统侧 Impedance Track 电量监测计
LM8330:接口
TI 具有 GPIO、PWM 和 IEC61000 ESD 保护的 I2C 兼容键盘控制器
MSP430F67751A:微控制器 (MCU) 和处理器
TI 具有 7 个 Σ-Δ ADC、LCD、实时时钟、128KB 闪存和 16KB RAM 的多相位计量 SoC
UCD7232:电源管理
TI 具有电流感应和故障保护功能的数字控制兼容同步降压闸极驱动器
SN74CBTD16210:开关与多路复用器
TI 具有电平转换器和 2 个控制输入的 5V、1:1 (SPST)、20 通道 FET 总线开关
OPA684:放大器
TI 具有禁用功能的低功耗电流反馈运算放大器
TPS40345:电源管理
TI 适用于成本优化型应用的 3V 至 20V、25A 同步降压控制器
AMC23C11:隔离
TI 具有可调阈值和锁存功能的快速响应增强型隔离式比较器
AFE5809:数据转换器
TI 具有 CW 无源混频器和数字 I/Q 解调器的全集成式 8 通道超声波模拟前端
SN74CB3Q3251:开关与多路复用器
TI 3.3V、8:1、单通道通用 FET 总线开关
TI 汽车类高速差动线路驱动器和接收器
TMUXHS4412:接口
TI 4 通道 20Gbps 2:1/1:2 差分多路复用器/多路信号分离器
TPS54427:电源管理
TI 4.5V 至 18V 输入,4A 同步降压转换器
TUSB214:接口
TI 具有直流升压和集成式 CDP 的 USB 2.0 高速信号调节器
UCC3895:电源管理
TI 具有增强控制逻辑、温度范围为 0°C 至 70°C 的相移全桥控制器
LMZM23600:电源管理
TI 采用 3.8mm × 3mm 封装的 36V、0.5A 降压直流/直流电源模块
TI代理|TI中国代理 - 国内领先的TI芯片采购平台
丰富的可销售TI代理库存,专业的销售团队可随时响应您的紧急需求,目标成为有价值的TI代理