TI代理,常备极具竞争力的充足现货
TI官网今日有何新闻? TI新闻头条报导
新型低功耗无线充电系统设计
(2025年4月26日更新)

摘要:目前流行的无线充电系统采用单发射线圈发射能量,有效充电面积小,用户体验差。为了改善这种情况,本文设计了一种位置自由的低功耗无线充电系统,该系统使用三个发射线圈阵列来扩展位置自由MSP430低功耗MCU降低功耗,提高系统实用性。此外,该系统还具有寄生金属检测和外来物体检测功能,提高了系统的安全性。

南皇电子专注于整合中国优质电子TI代理商国内领先的现货资源,提供合理的行业价格、战略备货、快速交付控制TI芯片供应商,轻松满足您的需求TI芯片采购需求.(http://www.litesemi.com/)

随着智能手机的兴起和普及,人们越来越依赖手机。然而,由于电池技术的限制,手机的充电频率随着功能的扩展而急剧下降,从最初的两三天到现在的一天或更少。无线充电技术的出现使充电过程更加方便,同时也解决了不同手机之间的兼容性问题。目前,主流无线充电技术主要包括以下三类:1)电磁感应:两种设备分别使用振荡电路线圈形成一组接收线圈,在接收设备线圈加上几兆赫兹交变电流,接收设备线圈产生感应电势,实现无线传输。目前,基于电磁感应的无线充电技术的传输功率为几瓦至几百瓦,传输距离小于1 cm。2)无线电波:根据电磁学原理,电磁波将在垂直导体棒中通过超高频交流形成。在特定频率下,我们称之为导体棒发射无线电波。若将圆形线圈作为天线,放置在无线电波周期变化的磁场中,则线圈中会感应到相应的电流。基于无线电波的无线充电技术利用电波能量可以通过天线传输和接收的原理,将电波的交流波形直接转换为直流。基于无线电波的无线充电技术的传输功率小于100毫瓦,传输距离最高可以达到10米。3)电磁共振模式:两个共振频率相同的物体之间的物体之间传递能量,而不同频率物体之间的相互作用较弱。根据这一原理,麻省理工学院的研究小组在灯泡试验中使用两个铜线圈作为电磁共振器。一个线圈连接到电源上作为发射器,另一个线圈连接到灯泡上作为接收器。通电后,发射器可以使用10 MHz频率振动,但它不会向外发射电磁波,而是在其周围形成强大的非辐射磁场。这种非辐射磁场可以与接收线圈协调传输能量。基于电磁共振的无线充电技术的传输功率可达数千瓦,传输距离可达数米。

本文采用TI的BQ500410A芯片构成无线充电系统TX端,RX端采用TI的BQ51013B。该方案使用3个发射线圈阵列来扩展位置自由,同时具有寄生金属检测(PMOD)检测外来物体(FOD)该功能保证了充电过程的安全。

1 原理介绍

1.1 传输原理

基于电磁感应的无线充电技术与变压器相似,基于电磁感应原理。经典的电磁学可以概括为一组著名的麦克斯韦方程组,即:

从麦克斯韦方程组可以看出,变化的电场会产生变化的磁场,变化的磁场也会产生变化的电场。如此重复,形成电磁场。以波长为界,在场源为中心的波长范围内,成为近场区,又称感应场;超出波长范围成为远场区,又称辐射场。感应场电磁场强度大,但衰减快;相反,辐射场电磁场强度小,但衰减缓慢。

基于电磁感应的无线充电技术应用了这一原理。发射端利用逆变技术将电网整流的直流电逆变为高频交流电,因此发射线圈周围会产生交变磁场。由于电磁感应的作用,感应电势位于感应场的接收线圈产生,然后在整流和整形后用于负载。

1.2 系统结构

完整的无线充电系统包括TX端和RX端两部分,其结构框图。

无线充电结构类似于空心变压器,通过线圈耦合实现能量传输。发射线圈及其驱动电路通常安装在充电板中,接收线圈及其驱动电路嵌入智能手机等需要充电的设备中。能量传输的效率与线圈之间的距离、线圈对齐度、线圈方向、线圈材料、磁场屏蔽、阻抗匹配、发射频率和空间比有关。线圈之间的距离和对齐程度对传输效率有很大影响。

为了获得更好的充电效率和体验,本文采用了三个发射线圈阵列来扩大充电区域。B0500410A以400 ms时间间隔依次使3个发射线圈,同时使其相应COMM模拟开关反馈信号通路。BQ500410A寻找最强的COMM反馈信号,然后驱动相应的发射线圈工作,以获得最佳的线圈匹配。因此,只有一个发射线圈同时工作,另外两个发射线圈处于待机状态。

为了减少电磁辐射,无线充电系统还在收发两端线圈的背面增加了一个铁氧体隔磁片,限制了两个隔磁片之间的能量传输区域,避免了无线充电系统工作时产生的辐射干扰智能手机或其他设备。

1.3 FOD和PMOD

检测外部物体(FOD)和寄生金属检测(PMOD)是本文设计方案的另一大特点。金属物体在交流磁场中会产生涡流,因此需要实时检测TX端和RX外部物体和寄生金属是否存在于端之间。当系统工作时,BQ500410A实时监测输入电压和输入电流,计算输入功率。同时,BQ51013B通过通信协议实时监测充电电压和充电电流,并反馈输出功率BQ50041A。BQ50041A如果输入功率与输出功率之间的差值大于此损耗阈值,则可通过电阻配置损耗阈值BQ50041A报警并停止能量传输。

1.4 低功耗

通过增加本文TI的MSP430低功耗MCU配合BQ500410A实现系统的低功耗。为了实现低功耗,最直接的方法之一是在没有负载的情况下直接关闭电源BQ50041A完全关机。但这样做,包括充电状态、错误状态、操作模式和驱动引脚状态信息将完全丢失。增加MSP430后,BQ50041 0A它可以定期关闭以节省功耗,其唤醒信号由MSP430来提供。同时,各种状态信息也是由MSP430来保存,LED状态指示灯也由原状态指示灯制成BQ5004 10A驱动变为由MSP430来驱动。这样,虽然系统的复杂性和成本有所提高,但待机功耗从原来的300开始 mW降低到90 mW左右。

TI芯片代理2 结束语

本文提出的无线充电系统解决了传统单线圈方案充电面积小的问题,大大提高了用户体验。因此,本文的方案具有更高的市场价值。此外,本文增加的低功耗电路可以将待机功耗从300开始 mW降到90 mW,能更好地满足一些低功耗设备的需求。

TI公司被热门关注的产品型号
LM2902-Q1:放大器
TI Automotive-grade, quad, 26-V, 1.2-MHz operational amplifier
MSP430F5505:微控制器 (MCU) 和处理器
TI 具有 16KB 闪存、4KB SRAM、10 位 ADC、DMA、UART/SPI/I2C、USB、计时器和硬件乘法器的 25MHz MCU
SN54HC00-DIE:逻辑和电压转换
TI 4 通道、2 输入、2V 至 6V 与非门
UCC27288:电源管理
TI 2.5-A to 3.5-A 120-V half-bridge driver with 8-V UVLO and no internal boostrap diode
UCC1801:电源管理
TI 低功耗 BiCMOS 电流模式 PWM
TLV2262:放大器
TI 双路轨到轨低压低功耗运算放大器
THS5641A:数据转换器
TI 8 位、100MSPS 数模转换器 (DAC)
TLC1543-EP:数据转换器
TI 具有串行控制 11 路模拟输入的增强型产品 10 位模数转换器
DRV8834:电机驱动器
TI 具有 1/32 微步进分度器的 11V、1.5A、双路 H 桥或步进电机驱动器
TPSM560R6H:电源管理
TI 采用 5mm x 5.5mm x 4mm QFN 封装的 4.2V 至 60V 输入、1V 至 16V 输出、0.6A 降压模块
TLC59282:电源管理
TI 具有 4 通道群组延迟功能的 16 通道恒流 LED 驱动器
CSD17585F5:电源管理
TI 采用 0.8mm x 1.5mm LGA 封装、具有栅极 ESD 保护的单路、33mΩ、30V、N 沟道 NexFET 功率 MOSFET
MCT8316A:电机驱动器
TI 40V 最大电压、8A 峰值电流无传感器梯形控制三相 BLDC 电机驱动器
CD54HC688:逻辑和电压转换
TI 具有使能端的 8 位等值/幅度比较器 (P=Q)
SN54S174:逻辑和电压转换
TI 具有清零端的六路 D 型触发器
TPS62142:电源管理
TI 采用 3x3 QFN 封装的 3–17V 2A 降压转换器
LM3435:电源管理
TI 具有 IC 控制接口的紧凑型顺序模式 RGB LED 驱动器
UCC27511A-Q1:电源管理
TI 具有 5V UVLO 和分离输出的汽车类 4A/8A 单通道栅极驱动器
SN74HC4066:开关与多路复用器
TI 5V、2:1 (SPDT)、4 通道模拟开关
INA2143:放大器
TI 双路、高速 (5V/μs)、250μV 失调电压、G= 10 或 G= 0.1 精密差分放大器
TI代理|TI中国代理 - 国内领先的TI芯片采购平台
丰富的可销售TI代理库存,专业的销售团队可随时响应您的紧急需求,目标成为有价值的TI代理