TI代理,常备极具竞争力的充足现货
TI哪些型号被关注? TI热门产品型号
TMS320DM6441的基本参数
  • 制造厂商:TI
  • 产品类别:微控制器 (MCU) 和处理器
  • 技术类目:处理器 - 数字信号处理器 (DSP)
  • 功能描述:达芬奇数字媒体片上系统
  • 点击这里打开及下载TMS320DM6441的技术文档资料
  • TI代理渠道,提供当日发货、严格的质量标准,满足您的目标价格
快速报价,在行业拥有较高的知名度及影响力
TMS320DM6441的产品详情:

The TMS320DM6441 (also referenced as DM6441) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices.

The DM6441 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.

The dual-core architecture of the DM6441 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C64x+ DSP core and an ARM926EJ-S core.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core incorporates:

  • A coprocessor 15 (CP15) and protection module
  • Data and program memory management units (MMUs) with table look-aside buffers.
  • Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT).

The TMS320C64x+™ DSPs are the highest-performance fixed-point DSP generation in the TMS320C6000™ DSP platform. It is based on an enhanced version of the second-generation high-performance, advanced very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSP cores an excellent choice for digital media applications. The C64x is a code-compatible member of the C6000™ DSP platform. The TMS320C64x+ DSP is an enhancement of the C64x+ DSP with added functionality and an expanded instruction set.

Any reference to the C64x DSP or C64x CPU also applies, unless otherwise noted, to the C64x+ DSP and C64x+ CPU, respectively.

With performance of up to 4104 million instructions per second (MIPS) at a clock rate of 513 MHz, the C64x+ core offers solutions to high-performance DSP programming challenges. The DSP core possesses the operational flexibility of high-speed controllers and the numerical capability of array processors. The C64x+ DSP core processor has 64 general-purpose registers of 32-bit word length and eight highly independent functional units&151;two multipliers for a 32-bit result and six arithmetic logic units (ALUs). The eight functional units include instructions to accelerate the performance in video and imaging applications. The DSP core can produce four 16-bit multiply-accumulates (MACs) per cycle for a total of 2052 million MACs per second (MMACS), or eight 8-bit MACs per cycle for a total of 4104 MMACS. For more details on the C64x+ DSP, see the TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732).

The DM6441 also has application-specific hardware logic, on-chip memory, and additional on-chip peripherals similar to the other C6000 DSP platform devices. The DM6441 core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 256K-bit direct mapped cache and the Level 1 data cache (L1D) is a 640K-bit 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 512K-bit memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two.

The peripheral set includes: two configurable video ports; a 10/100 Mb/s Ethernet MAC (EMAC) with a management data input/output (MDIO) module; an inter-integrated circuit (I2C) bus interface; one audio serial port (ASP); two 64-bit general-purpose timers each configurable as two independent 32-bit timers; one 64-bit watchdog timer; up to 71 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UARTs with hardware handshaking support on one UART; three pulse width modulator (PWM) peripherals; and two external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.

The DM6441 device includes a video processing subsystem (VPSS) with two configurable video/imaging peripherals: one video processing front-end (VPFE) input used for video capture, one video processing back-end (VPBE) output with imaging coprocessor (VICP) used for display.

The video processing front-end (VPFE) consists of a CCD controller (CCDC), a preview engine (previewer), histogram module, auto-exposure/white balance/focus module (H3A), and resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and charge coupled devices (CCDs). The previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer pattern to YUV4:2:2. The histogram and H3A modules provide statistical information on the raw color data for use by the DM6441. The resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024.

The video processing back-end (VPBE) consists of an on-screen display engine (OSD) and a video encoder (VENC). The OSD engine is capable of handling two separate video windows and two separate OSD windows. Other configurations include two video windows, one OSD window, and one attribute window allowing up to eight levels of alpha blending. The VENC provides four analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs. VFocus (part of the VPBE functionality and operationally (e.g., 16-bit multiplexed address/data) is also provided.

The Ethernet media access controller (EMAC) provides an efficient interface between the DM6441 and the network. The DM6441 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.

The management data input/output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.

The HPI, I2C, SPI, USB2.0, and VLYNQ ports allow DM6441 to easily control peripheral devices and/or communicate with host processors. The DM6441 also provides Memory Stick/Memory Stick Pro card support, MMC/SD with SDIO support, and a universal serial bus (USB).

The DM6441 also includes a video/imaging coprocessor (VICP) to offload many video and imaging processing tasks from the DSP core, making more DSP MIPS available for common video and imaging algorithms. For more information on the VICP enhanced codecs, such as H.264 and MPEG4, please contact your nearest TI sales representative.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The DM6441 has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™ debugger interface for visibility into source code

TMS320DM6441的优势和特性:
  • Get started today with production-ready, easy-to-use audio and video codecs for digital media processors based on DaVinci? technology. Also available are various O/S Board Support Packages and software updates. All codecs are available for FREE evaluation. REQUEST FREE SOFTWARE!
  • High-Performance Digital Media SoC
    • C64x+? DSP Clock Rate
      • 405-MHz (Max) at 1.05 V or 513-MHz (Max) at 1.2 V
    • ARM926EJ-S? Clock Rate
      • 202.5-MHz (Max) at 1.05 V or 256-MHz (Max) at 1.2 V
    • Eight 32-Bit C64x+ Instructions/Cycle
    • 4752 C64x+ MIPS
    • Fully Software-Compatible With C64x &153; ARM9?
  • Advanced Very-Long-Instruction-Word (VLIW) TMS320C64x+? DSP Core
    • Eight Highly Independent Functional Units
      • Six ALUs (32-/40-Bit), Each Supports Single 32-Bit, Dual 16-Bit, or Quad 8-Bit Arithmetic per Clock Cycle
      • Two Multipliers Support Four 16 x 16-Bit Multiplies (32-Bit Results) per Clock Cycle or Eight 8 × 8-Bit Multiplies (16-Bit Results) per Clock Cycle
    • Load-Store Architecture With Non-Aligned Support
    • 64 32-Bit General-Purpose Registers
    • Instruction Packing Reduces Code Size
    • All Instructions Conditional
    • Additional C64x+? Enhancements
      • Protected Mode Operation
      • Exceptions Support for Error Detection and Program Redirection
      • Hardware Support for Modulo Loop Operation
  • C64x+ Instruction Set Features
    • Byte-Addressable (8-/16-/32-/64-Bit Data)
    • 8-Bit Overflow Protection
    • Bit-Field Extract, Set, Clear
    • Normalization, Saturation, Bit-Counting
    • Compact 16-Bit Instructions
    • Additional Instructions to Support Complex Multiplies
  • C64x+ L1/L2 Memory Architecture
    • 32K-Byte L1P Program RAM/Cache (Direct Mapped)
    • 80K-Byte L1D Data RAM/Cache (2-Way Set-Associative)
    • 64K-Byte L2 Unified Mapped RAM/Cache (Flexible RAM/Cache Allocation)
  • ARM926EJ-S Core
    • Support for 32-Bit and 16-Bit (Thumb? Mode) Instruction Sets
    • DSP Instruction Extensions and Single Cycle MAC
    • ARM? Jazelle? Technology
    • Embedded ICE-RT? Logic for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 8K-Byte Data Cache
    • 16K-Byte RAM
    • 8K-Byte ROM
  • Embedded Trace Buffer? (ETB11?) With 4KB Memory for ARM9 Debug
  • Endianness: Little Endian for ARM and DSP
  • Video Imaging Co-Processor (VICP)
  • Video Processing Subsystem
    • Front End Provides:
      • CCD and CMOS Imager Interface
      • BT.601/BT.656 Digital YCbCr 4:2:2 (8-/16-Bit) Interface
      • Preview Engine for Real-Time Image Processing
      • Glueless Interface to Common Video Decoders
      • Histogram Module
      • Auto-Exposure, Auto-White Balance, and Auto-Focus Module
      • Resize Engine
        • Resize Images From 1/4× to 4×
        • Separate Horizontal/Vertical Control
    • Back End Provides:
      • Hardware On-Screen Display (OSD)
      • Four 54-MHz DACs for a Combination of
        • Composite NTSC/PAL Video
        • Luma/Chroma Separate Video (S-video)
        • Component (YPbPr or RGB) Video (Progressive)
      • Digital Output
        • 8-/16-bit YUV or up to 24-Bit RGB
        • HD Resolution
        • Up to Two Video Windows
  • External Memory Interfaces (EMIFs)
    • 32-Bit DDR2 SDRAM Memory Controller With 256M-Byte Address Space (1.8-V I/O)
    • Asynchronous16-Bit Wide EMIF (EMIFA) With 128M-Byte Address Reach
      • Flash Memory Interfaces
        • NOR (8-/16-Bit-Wide Data)
        • NAND (8-/16-Bit-Wide Data)
  • Flash Card Interfaces
    • Multimedia Card (MMC)/Secure Digital (SD) with Secure Data I/O (SDIO)
    • CompactFlash Controller With True IDE Mode
    • SmartMedia
    • Memory Stick? and Memory Stick Pro?
  • Enhanced Direct-Memory-Access (EDMA3) Controller (64 Independent Channels)
  • Two 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
  • One 64-Bit Watch Dog Timer
  • Three UARTs (One with RTS and CTS Flow Control)
  • One Serial Port Interface (SPI) With Two Chip-Selects
  • Master/Slave Inter-Integrated Circuit (I2C Bus?)
  • Audio Serial Port (ASP)
    • I2S
    • AC97 Audio Codec Interface
    • Standard Voice Codec Interface (AIC12)
  • 10/100 Mb/s Ethernet MAC (EMAC)
    • IEEE 802.3 Compliant
    • Media Independent Interface (MII)
  • VLYNQ? Interface (FPGA Interface)
  • Host Port Interface (HPI) with 16-Bit Multiplexed Address/Data
  • USB Port With Integrated 2.0 PHY
    • USB 2.0 High-/Full-Speed Client
    • USB 2.0 High-/Full-/Low-Speed Host
  • Three Pulse Width Modulator (PWM) Outputs
  • Macrovision? Anticopy Protection (TMS320DM6442 only)(1)
  • On-Chip ARM ROM Bootloader (RBL) to Boot From NAND Flash or UART
  • ATA/ATAPI I/F (ATA/ATAPI-5 Specification)
  • Individual Power-Saving Modes for ARM/DSP
  • Flexible PLL Clock Generators
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • Up to 71 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)
  • 361-Pin Pb-Free BGA Package (ZWT Suffix), 0.8-mm Ball Pitch
  • 0.09-μm/6-Level Cu Metal Process (CMOS)
  • 3.3-V and 1.8-V I/O, 1.05-V or 1.2-V internal
  • Applications:
    • Digital Media
    • Networked Media Encode/Decode
    • Video Imaging
    • Portable Media Players

(1) This device is protected by U.S. patent numbers 4,631,603; 4,819,098; 5,315,448; and 6,516,132, and other intellectual property rights. The use of Macrovision's copy protection technology in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited.All trademarks are the property of their respective owners.

TMS320DM6441的参数(英文):
  • DSP
  • 1 C64x
  • DSP MHz (Max)
  • 405, 513
  • CPU
  • 32-/64-bit
  • Operating system
  • DSP/BIOS, Integrity, Linux, Neutrino, PrOS, Windows Embedded CE
  • Ethernet MAC
  • 10/100
  • Rating
  • Catalog
TMS320DM6441具体的完整产品型号参数及价格(美元):

TMS320DM6441的完整型号有:TMS320DM6441AZWT、TMS320DM6441BZWT,以下是这些产品的关键参数及官网采购报价:

TMS320DM6441AZWT,工作温度:PropertyValue,封装:NFBGA (ZWT)-361,包装数量MPQ:90个,MSL 等级/回流焊峰值温度:Level-3-260C-168 HR,引脚镀层/焊球材料:Call TI,TI官网TMS320DM6441AZWT的批量USD价格:28.604(1000+)

TMS320DM6441BZWT,工作温度:PropertyValue,封装:NFBGA (ZWT)-361,包装数量MPQ:90个,MSL 等级/回流焊峰值温度:Level-3-260C-168 HR,引脚镀层/焊球材料:Call TI,TI官网TMS320DM6441BZWT的批量USD价格:28.604(1000+)

轻松满足您的TI芯片采购需求
TMS320DM6441的评估套件:

TMDSEMU200-U — Spectrum Digital XDS200 USB 仿真器

Spectrum Digital XDS200 是最新 XDS200 系列 TI 处理器调试探针(仿真器)的首个模型。XDS200 系列拥有超低成本 XDS100 与高性能 XDS560v2 之间的低成本与高性能的完美平衡。此外,对于带有嵌入式缓冲跟踪器 (ETB) 的所有 ARM 和 DSP 处理器,所有 XDS 调试探针均支持内核和系统跟踪。

Spectrum Digital XDS200 通过 TI 20 引脚连接器(带有适合 TI 14 引脚、TI 10 引脚和 ARM 20 引脚的多个适配器)连接到目标板,而通过 USB2.0 高速连接 (480Mbps) 连接到主机 PC。要在主机 (...)

TMDSEMU560V2STM-U — Blackhawk XDS560v2 系统跟踪 USB 仿真器

XDS560v2 System Trace 是 XDS560v2 系列高性能 TI 处理器调试探针(仿真器)的第一种型号。XDS560v2 是 XDS 系列调试探针中性能最高的一款,同时支持传统 JTAG 标准 (IEEE1149.1) 和 cJTAG (IEEE1149.7)。

XDS560v2 System Trace 在其巨大的外部存储器缓冲区中加入了系统引脚跟踪。这种外部存储器缓冲区适用于指定的 TI 器件,通过捕获相关器件级信息,获得准确的总线性能活动和吞吐量,并对内核和外设进行电源管理。此外,对于带有嵌入式缓冲跟踪器 (ETB) 的所有 ARM 和 DSP 处理器,所有 XDS (...)

TMDSEMU560V2STM-UE — Spectrum Digital XDS560v2 系统跟踪 USB 和以太网

XDS560v2 System Trace 是 XDS560v2 系列高性能 TI 处理器调试探针(仿真器)的第一种型号。XDS560v2 是 XDS 系列调试探针中性能最高的一款,同时支持传统 JTAG 标准 (IEEE1149.1) 和 cJTAG (IEEE1149.7)。

XDS560v2 System Trace 在其巨大的外部存储器缓冲区中加入了系统引脚跟踪。这种外部存储器缓冲区适用于指定的 TI 器件,通过捕获相关器件级信息,获得准确的总线性能活动和吞吐量,并对内核和外设进行电源管理。此外,对于带有嵌入式缓冲跟踪器 (ETB) 的所有 ARM 和 DSP 处理器,所有 XDS (...)

LINUXDVSDK-DV200 — 用于 DM644x 和 DM646x 的 Linux DVSDK (v2.00) - 生产版本

Multimedia Framework Products (MFP)

A major advantage of programmable DSPs over fixed-function devices is their ability to accelerate multiple multimedia functions in a single device. TI multimedia framework products are designed to enable users to easily share a DSP between algorithms by handling (...)

SPRC122 — C62x/C64x 快速运行时支持 (RTS) 库

C62x/64x FastRTS Library 是优化型浮点函数库,适用于使用 TMS320C62x 或 TMS320C64x 器件的 C 语言编程器。这些例程通常用于计算密集型实时应用,在这些应用中,提高执行速度至关重要。通过将当前的浮点库 (RTS) 函数替换为 FastRTS Library,可以在不重写现有代码的情况下大大加快执行速度。

该版本还包括 FastRTS Library 中可用函数子集的 C 语言实施。C 代码可让用户内联这些函数并获得更高性能。

特性 单精度和双精度数学函数 单精度和双精度转换函数 浮点加法 将浮点值转换为 32 位带符号整数值 将 32 位带符号整数值转换为浮点值 (...)

SPRC831 — 视频影像协处理器 (VICP) 信号处理库

德州仪器 (TI) VICP 信号处理库是高度优化的软件算法的集合,它在 VICP 硬件加速器上运行。该库使应用开发人员能够有效地利用 VICP 性能,而无需将宝贵时间花在开发用于加速器的软件上。具有成熟的可用性和性能优化算法,VICP 信号处理库能够显著降低应用开发时间。DSP 上的自由 MIPS 使应用开发人员能够将更多差异化功能包含在最终应用中。

VICP 硬件加速器是一个并行 MAC 引擎。通过执行各种计算密集型任务,该加速器能够非常有效地提高 DSP 的性能,这完全归功于它的灵活架构。

VICP 支持各种算法以便能提供其它 DSP 资源
  • 矩阵运算/阵列运算:
    • (...)

TMDXDAISXDM — eXpressDSP 算法标准 – xDAIS 开发者套件和 xDM

xDAIS and xDM

The eXpressDSP™ Algorithm Interoperability Standard (xDAIS) and the eXpressDSP Digital Media (xDM) standard fully leverage the ability of DSPs to perform a wide range of multimedia functions on a single device. eXpressDSP compliance is achieved by adhering to these standards. To (...)

DM6441 ZWT Rev. 1 BSDL Model

TI has partnered with companies to offer a wide range of software, tools, and SOMs using TI processors to accelerate your path to production. Download this search tool to quickly browse our third-party solutions and find the right third-party to meet your needs. The software, tools and modules (...)
TI代理|TI中国代理 - 国内领先的TI芯片采购平台
丰富的可销售TI代理库存,专业的销售团队可随时响应您的紧急需求,目标成为有价值的TI代理