

🕳 Order

Now

ZHCSHX4B-NOVEMBER 2017-REVISED JUNE 2019

适用于汽车内部显示的 DLP3030-Q1 0.3 英寸 WVGA DMD

Technical

Documents

- 1 特性
- 通过汽车认证
- 0.3 英寸对角线微镜阵列
 - 7.6µm 微镜间距
 - ±12°微镜倾斜角(相对于平面)
 - 采用侧面照明以提高效率
- WVGA (864 × 480) 分辨率
- 偏振无关型空间光调制器
 - 与 LED 或激光光源兼容
 - 可通过偏光眼镜看到图像
- 低功耗: 105mW (典型值)
- 工作温度范围: -40°C 至 105°C
- 具有 2.5℃/W 热效率的密封封装
- 可实现系统内验证的 JTAG 边界扫描
- 与 DLPC120-Q1 汽车 DMD 控制器兼容
- 78MHz DDR DMD 接口
- 2 应用
- 宽视场和增强现实平视显示 (HUD)
- 高分辨率前照灯
- 车内投影显示和照明

3 说明

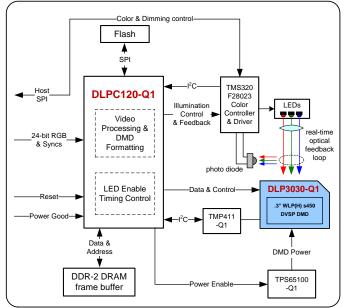
🧷 Tools &

Software

DLP3030-Q1 汽车 DMD 主要针对具有很大视野或增 强现实功能(需要长焦距)的汽车抬头 显示 (HUD)应 用。该芯片组能够与 LED 或激光器配合使用,以生成 具有 125% 以上 NTSC 色域的深度饱和颜色并支持 24 位 RGB 视频输入。此外,该芯片组可以凭借宽动态范 围和快速开关功能(不随温度的变化而变化)实现高亮 度(15,000cd/m² 典型值)HUD 系统。当用于 TI 参考 设计中时,能够实现超过 5000:1 的极高动态范围,以 满足汽车 HUD 系统针对明亮的白昼和黑暗的夜晚驾驶 条件的工作范围要求。

Support &


Community


20

器件信息⁽¹⁾

器件型号	封装	封装尺寸(标称值)			
DLP3030-Q1	FYJ (149)	22.30mm × 32.20mm			

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

Copyright © 2017, Texas Instruments Incorporated

目录

1	特性	
2	应用	
3	说明	
4	修订	历史记录 2
5	Pin (Configuration and Functions 4
6	Spee	cifications7
	6.1	Absolute Maximum Ratings 7
	6.2	Storage Conditions7
	6.3	ESD Ratings7
	6.4	Recommended Operating Conditions 8
	6.5	Thermal Information 10
	6.6	Electrical Characteristics 10
	6.7	Timing Requirements 12
	6.8	Switching Characteristics 16
	6.9	System Mounting Interface Loads 16
	6.10	Physical Characteristics of the Micromirror Array. 17
	6.11	Optical Characteristics of the Micromirror Array 18
	6.12	Window Characteristics 19
	6.13	Chipset Component Usage Specification 19
7	Deta	iled Description 20
	7.1	Overview 20
	7.2	Functional Block Diagram 20
	7.3	Feature Description 20

4 修订历史记录

注: 之前版本的页码可能与当前版本有所不同。

Changes from Revision A (March 2018) to Revision B

•	Added illumination overfill maximum allowable heat load specifications, table notes, and figure in <i>Recommended Operating Conditions</i>	9
•	Added calculation for array width and height with respect to number of active columns and rows in the Physical Characteristics of the Micromirror Array table	. 17
•	Deleted axis-of-rotation specification from Optical Characteristics of the Micromirror Array table, as it was deemed unnecessary for customer designs	18
•	Deleted illumination overfill row and corresponding table note in the Window Characteristics table	. 19
•	Changed description of illumination overfill in the <i>Illumination Overfill and Alignment</i> section and added reference to <i>Recommended Operating Conditions</i> overfill specification	27
•	已添加 器件处理 部分	35

Changes from Original (November 2017) to Revision A

•	已更改 将器件状态从高级信息 更改为生产数据	1
•	已更改 将封装标识符从 CPGA 更改为 FYJ	1
•	Added comment to ground V_{CCH} and V_{SSH} pins	. 6
•	Changed maximum DMD storage temperature from 105°C to 125°C in Storage Conditions table	7
•	Changed I _{OFFSET} from 2.16 mA to 2.93 mA in <i>Electrical Characteristics</i> table	10
•	Changed I _{RESET} from 1.5 mA to -2.00 mA in <i>Electrical Characteristics</i> table	10
•	Changed P _{OFFSET} from 13.2 mW to 25.64 mW in <i>Electrical Characteristics</i> table	11
•	Changed P _{BIAS} from 37.3 mW to 37.95 mW in <i>Electrical Characteristics</i> table	11

STRUMENTS

EXAS

	7.4	Optical Performance 27
	7.5	DMD Image Quality Specification 28
	7.6	Definition of Micromirror Landed-On/Landed-Off Duty
	(Cycle 28
8	Appl	ication and Implementation 29
	8.1	Application Information
	8.2	Typical Application 29
	8.3	Application Mission Profile Consideration
9		er Supply Recommendations
	9.1	Power Supply Sequencing Requirements
10	Layo	out
	10.1	Layout Guidelines 33
	10.2	Temperature Diode Pins 33
	10.3	Layout Example 33
11	器件	和文档支持 34
	11.1	器件支持
	11.2	文档支持 35
	11.3	接收文档更新通知 35
	11.4	社区资源
	11.5	商标
	11.6	静电放电警告
	11.7	器件处理
	11.8	Glossary 35

12 机械、封装和可订购信息...... 35

Page

Page


2

•	Changed P _{RESET} from 15.8 mW to 21.00 mW in <i>Electrical Characteristics</i> table	11
•	Changed P _{TOTAL} from 236.6 mW to 254.77 mW in <i>Electrical Characteristics</i> table	11
•	Added table note in Optical Parameters table	18
•	已更改 更改了器件标记 部分中的器件标记编号	34

5 Pin Configuration and Functions

Pin Configurations and Functions

PIN PIN				
NAME	NO.	I/O	DESCRIPTION	TRACE, mm ⁽¹⁾
DATA(0)	F18			
DATA(1)	F20			
DATA(2)	G20			
DATA(3)	G19			
DATA(4)	H19			
DATA(5)	G18			
DATA(6)	J20	120		
DATA(7)	H20		Data bus. Synchronous to rising edge and falling edge of DCLK.	0.050
DATA(8)	J19		or boek.	8.059
DATA(9)	K18			
DATA(10)	K19			
DATA(11)	L20			
DATA(12)	L18			
DATA(13)	K20			
DATA(14)	M18			
DCLK	N18	LVCMOS input	Data clock.	
LOADB	M20	·	Parallel latch load enable. Synchronous to rising edge and falling edge of DCLK.	10.939
SCTRL	Sorial control (supp.) Supphrapping to riging adda and		6.596	
TRC	M19	Toggle rate control. Synchronous to rising edge and falling edge of DCLK.8		8.617
DAD_BUS	A7		Reset control serial bus. Synchronous to rising edge of SAC_CLK.	
RESET_OEZ	A5		Active low. Output enable signal for internal reset driver circuitry.	13.37
RESET_STROBE A10 Rising edge on RESET_ST control signals.		Rising edge on RESET_STROBE latches in the control signals.	13.329	
SAC_BUS	B9		Stepped address control serial bus. Synchronous to rising edge of SAC_CLK.	12.586
SAC_CLK	A8		Stepped address control clock.	12.668
ТСК	M2		JTAG clock.	10.489
TDI	N3		JTAG data input. Synchronous to rising edge of TCK. Bond pad connects to internal pull up resistor.	11.04
TDO	М3	LVCMOS output	JTAG data output. Synchronous to falling edge of TCK. Tri-state failsafe output buffer.	10.067
TMS	R5	LVCMOS input	JTAG mode select. Synchronous to rising edge of TCK. Bond pad connects to internal pull up resistor.	10.413
TEMP_MINUS	T10		Calibrated temperature diode used to assist accurate	N/A
TEMP_PLUS	T11	Analog Input	temperature measurements of DMD die.	N/A
No Connect (Unused)	A3, A18, A19, A20, B2, B10, B18, B19, B20, C1, C20, D18, D19, D20, E18, E19, E20, N20, P20, R18, R19, R20, T18, T19, T20	N/A	N/A	N/A

(1) Propagation delay is 10.24 ps/mm for the DMD Series 450 ceramic package trace lengths.

Pin Configurations and Functions (continued)

PIN	١			(1)
NAME	NO.	I/O	DESCRIPTION	TRACE, mm ⁽¹⁾
V _{BIAS} ⁽²⁾	F3, K3, L3		Power supply for positive bias level of mirror reset signal.	N/A
V _{CC} ⁽²⁾	A9, A12, A14, A16, B13, B16, R12, R13, R16, R17, T13, T14, T16	Power	Power supply for low voltage CMOS logic. Power supply for normal high voltage at mirror address electrodes. Power supply for offset level of mirror reset signal during power down.	N/A
V _{CCH}	P3, R3, T3, T4, T5, T6	Connect to GND	Reserved pin.	N/A
V _{OFFSET} ⁽²⁾	D1, E1, M1, N1		Power supply for high voltage CMOS logic. Power supply for stepped high voltage at mirror address electrodes. Power supply for offset level of mirror reset signal.	N/A
V _{REF} ⁽²⁾	B11, B12		Power supply for low voltage CMOS DDR interface.	N/A
V _{RESET} ⁽²⁾	B3, C3, E3		Power supply for negative reset level of mirror reset signal.	N/A
V _{SS} ⁽²⁾	A6, A11, A13, A15, A17, B4, B5, B8, B14, B15, B17, C2, C18, C19, F1, F2, F19, H1, H2, H3, H18, J18, K1, K2, L19, N2, P18, P19, R4, R14, R15, T7, T9, T12, T15, T17	Power	Common return for all power.	N/A
V _{SSH}	P1, P2, R1, R2, T1, T2	Connect to GND	Reserved pin.	N/A
RESERVED_BIM	Т8			N/A
RESERVED_DT	R7	Connect to GND	Bond pad connects to internal pull down resistor.	N/A
RESERVED_RM	E2			N/A
RESERVED_R(0)	G1			N/A
RESERVED_R(1)	G2			N/A
RESERVED_R(2)	G3			N/A
RESERVED_R(3)	J1	Do not connect	Bond pad connects to 250k pull down resistor.	N/A
RESERVED_R(4)	J2	Do not connect	Manufacturing test.	N/A
RESERVED_R(5)	J3			N/A
RESERVED_R(6)	L1			N/A
RESERVED_R(7)	L2			N/A
RESERVED_PFE	R6			N/A
RESERVED_RA(0)	B6			N/A
RESERVED_RA(1)	D3	Connect to GND	Bond pad connects to internal pull down resistor.	N/A
RESERVED_RA(2)	B7		Bona pad connects to internal pull down resistor.	N/A
RESERVED_RS(0)	A4			N/A
RESERVED_RS(1)	D2			N/A
RESERVED_SO	R9	Do not connect	Tri-state failsafe output buffer.	N/A
RESERVED_TP(0)	R8			N/A
RESERVED_TP(1)	R10	Connect to GND	Manufacturing test.	N/A
RESERVED_TP(2)	R11			N/A

(2) The following power supplies are required to operate the DMD: V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , V_{SS} .

6 Specifications

Absolute Maximum Ratings 6.1

See $^{(1)}$

		MIN	MAX	UNIT
SUPPLY VOLTAGE				
V _{REF}	LVCMOS logic supply voltage ⁽²⁾	-0.5	4	V
V _{cc}	LVCMOS logic supply voltage ⁽²⁾	-0.5	4	V
V _{OFFSET}	Mirror electrode and HVCMOS voltage ⁽²⁾	-0.5	8.75	V
V _{BIAS}	Mirror electrode voltage	-0.5	17	V
V _{BIAS} – V _{OFFSET}	Supply voltage delta ⁽³⁾		8.75	V
V _{RESET}	Mirror electrode voltage	-11	0.5	V
Input voltage: other Inputs	See ⁽²⁾	-0.5	V _{REF} + 0.3	V
fdclk	Clock frequency	60	80	MHz
I _{TEMP_DIODE}	Temperature diode current		500	μA
ENVIRONMENTAL				
Operating DMD array temperature (T _{ARRAY}) (monitored by TMP411-Q1 via DLPC120-Q1)	See ⁽⁴⁾ and Active Array Temperature	-40	105	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Unless otherwise indicated, these are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

All voltage values are with respect to GND (V_{SS}). V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , and V_{SS} are required to operate the DMD. To prevent excess current, the supply voltage delta $|V_{BIAS} - V_{OFFSET}|$ must be less than or equal to 8.75 V. (2)

(3)

(4) Contact TI application engineering for more details about the DMD modeled use profile.

6.2 Storage Conditions⁽¹⁾

Applicable for the DMD as a component or non-operating in a system.

		MIN	MAX	UNIT
T _{stg}	DMD storage temperature	-40	125	°C

(1) As a best practice, TI recommends storing the DMD in a temperature and humidity controlled environment.

6.3 ESD Ratings⁽¹⁾

				VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-00	01 ⁽²⁾	±2000	
V _(ESD)	Electrostatic discharge	Charged device model (CDM) per IESD22 C101 ⁽³⁾	All pins	±500	V
		Charged-device model (CDM), per JESD22-C101 ⁽³⁾	Corner pins	±750	

All CMOS devices require proper electrostatic discharge (ESD) handling procedures. (1)

JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. (2)

(3)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ZHCSHX4B-NOVEMBER 2017-REVISED JUNE 2019

6.4 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
SUPPLY VOLTAG	E RANGE				
V _{REF}	LVCMOS interface power supply voltage ⁽¹⁾	1.65	1.8	1.95	V
V _{CC}	LVCMOS logic power supply voltage ⁽¹⁾	2.25	2.5	2.75	V
V _{OFFSET}	Mirror electrode and HVCMOS voltage ⁽¹⁾	8.25	8.5	8.75	V
V _{BIAS}	Mirror electrode voltage	15.5	16	16.5	V
V _{BIAS} – V _{OFFSET}	Supply voltage delta ⁽²⁾			8.75	V
V _{RESET}	Mirror electrode voltage	-9.5	-10	-10.5	V
V _P VT+	Positive going threshold voltage	$0.4 \times V_{REF}$		$0.7 \times V_{REF}$	V
V _N VT-	Negative going threshold voltage	$0.3 \times V_{REF}$		$0.6 \times V_{REF}$	V
$V_H \Delta VT$	Hysteresis voltage (Vp – Vn)	$0.1 \times V_{REF}$		$0.4 \times V_{REF}$	V
I _{OH_TDO}	High level output current @ Voh = 2.25 V, TDO, Vcc = 2.25 V			-2	mA
I _{OL_TDO}	Low level output current @ Vol = 0.4 V, TDO, Vcc = 2.25 V			2	mA
TEMPERATURE D	IODE				
I _{TEMP_DIODE}	Max current source into temperature diode ⁽³⁾			120	μA
ENVIRONMENTAL					
ILL _{UV} ⁽⁴⁾	Illumination, wavelength < 395 nm		0.68	2.0	mW/cm ²
ILL _{IR}	Illumination, wavelength > 800 nm			10	mW/cm ²
T _{ARRAY}	Operating DMD array temperature (monitored by TMP411-Q1 via DLPC120-Q1) $^{(5)(6)(7)}$	-40		105	°C

(1)

- V_{BIAS} , V_{CC} , V_{OFFSET} , V_{REF} , V_{RESET} , V_{SS} are required to operate the DMD. To prevent excess current, the supply voltage delta $|V_{BIAS} V_{OFFSET}|$ must be less than or equal to 8.75 V. Temperature Diode is to allow accurate measurement of the DMD array temperature during operation. (2)
- (3)

The maximum operation conditions for operating temperature and illumination UV shall not be implemented simultaneously. (4)

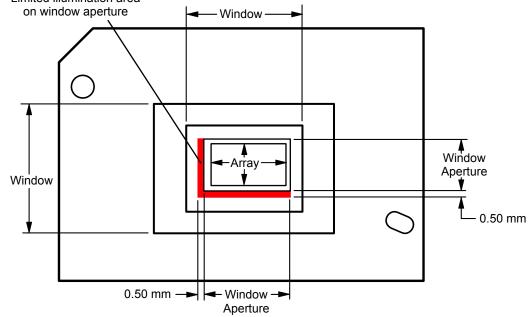
DMD active array temperature can be calculated as shown in Active Array Temperature section. Additionally, the DMD array (5) temperature is monitored in the system using the TMP411-Q1 and DLPC120-Q1 as shown in the system block diagram.

For applications that are higher brightness (> 1000 lumens) or underfill the active array optically, the TMP411-Q1 and temperature (6) sensing diode are not sufficient to determine maximum array temperature. Contact TI Applications Engineering for array temperature calculation methods for this application.

TI assumes a normal automotive operating profile without continuous operation at either minimum or maximum temperatures. Operating (7) profile information for device duty cycle and temperature may be provided if requested.

ISTRUMENTS

EXAS


Recommended Operating Conditions (continued)

Over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
	Illumination overfill maximum allowable heat load on left and bottom sides of the aperture, T_{ARRAY} < 75°C $^{(9)}$			26	mW/mm ²
ILL _{OVERFILL} ⁽⁸⁾	Illumination overfill maximum allowable heat load on left and bottom sides of the aperture, T_{ARRAY} > 75°C $^{(9)}$			20	mW/mm ²

(8) See Illumination Overfill and Alignment section.

(9) Heat load outside the aperture in the red areas shown in the figure below should not exceed the values listed in the table. These values assume a uniform distribution. For a non-uniform distribution, please contact TI Applications Engineering for additional information. Limited illumination area

STRUMENTS

XAS

6.5 Thermal Information

THERMAL METRIC ⁽¹⁾		DLP3030-Q1	
		FYJ (CPGA)	UNIT
		149 PINS	
Thermal resistance	Active area to test point 1 (TP1) ⁽¹⁾⁽²⁾	2.5	°C/W

(1) The total heat load on the DMD is a combination of the incident light absorbed by the active area and electrical power dissipation of the array. See Active Array Temperature section. Optical systems should be designed to minimize the light energy falling outside the active array area since any additional thermal load in this area can significantly degrade the reliability of the device.

(2) Thermal resistance assumes 16.3% optical overfill of the active array. Contact TI Applications Engineering for thermal resistance with an optically underfilled array.

6.6 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP MAX	UNIT	
	I Pale la calendaria de la calendaria	VCC = 2.25 V	4.7			
V _{OH}	High level output voltage	$I_{OH} = -8 \text{ mA}$	1.7		V	
.,		VREF = 1.8 V				
V _{OH2}	High level output voltage ⁽³⁾	$I_{OH} = -2 \text{ mA}$	1.44		V	
		VCC = 2.75 V		0.4	N/	
V _{OL}	Low level output voltage	$I_{OL} = 8 \text{ mA}$		0.4	V	
14	Low lovel output velte en (3)	VREF = 1.8 V		0.00	V	
V _{OL2}	Low level output voltage ⁽³⁾	$I_{OL} = 2 \text{ mA}$		0.36	V	
		VREF = 1.95 V	10			
1	Output high impedance ourrent	$V_{OL} = 0 V$	-10			
I _{OZ}	Output high impedance current	VREF = 1.95 V		10	μA	
		V _{OH} = VREF		10		
1	Low level input current ⁽⁴⁾	VREF = 1.95 V	-5			
IIL	Low level input current ??	$V_{I} = 0 V$			μA	
		VREF = 1.95 V		C		
I _{IH}	High level input current ⁽⁴⁾	V _I = VREF		6	μA	
		VREF = 1.95 V	705			
I _{IL2}	Low level input current ⁽⁵⁾	$V_I = 0 V$	-785		μA	
	(5)	VREF = 1.95 V		6		
I _{IH2}	High level input current ⁽⁵⁾	$V_I = VREF$		6	μA	
	Low level input current ⁽⁶⁾	VREF = 1.95 V	-5			
I _{IL3}		$V_{I} = 0 V$	-5		μA	
	High level input current ⁽⁶⁾	VREF = 1.95 V		785		
I _{IH3}		$V_I = VREF$		765	μA	
CURRENT						
I _{REF}	Current at $V_{REF} = 1.95 V$	f _{DCLK} = 80 MHz		2.80	mA	
I _{cc}	Current at $V_{CC} = 2.75 V$	f _{DCLK} = 80 MHz		59.90	mA	
IOFFSET	Current at $V_{OFFSET} = 8.75 V$			2.93	mA	
I _{BIAS}	Current at $V_{BIAS} = 16.5 V$			2.30	mA	
I _{RESET}	Current at V _{RESET} = -10.5 V			-2.00	mA	

(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

(2) All voltage values are with respect to the ground pins (V_{SS}).

(3) Specification is for LVCMOS JTAG output pin TDO.

(4) Specification is for LVCMOS input pins, which do not have pull up or pull down resistors. See *Pin Configuration and Functions* section.

(5) Specification is for LVCMOS input pins which do have pull down resistors (JTAG: TDI, TMS). See *Pin Configuration and Functions* section.

(6) Specification is for LVCMOS input pins which do have pull down resistors. See *Pin Configuration and Functions* section.

Electrical Characteristics (continued)

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾

	PARAMETER	TEST CONDITIONS ⁽²⁾	MIN	TYP	MAX	UNIT
POWER ⁽⁷⁾						
P _{REF}	Power at V _{REF} = 1.95 V	f _{DCLK} = 80 MHz			5.46	mW
P _{CC}	Power at $V_{CC} = 2.75 V$	f _{DCLK} = 80 MHz			164.73	mW
POFFSET	Power at V _{OFFSET} = 8.75 V				25.64	mW
P _{BIAS}	Power at V _{BIAS} = 16.5 V				37.95	mW
P _{RESET}	Power at V _{RESET} = -10.5 V				21.00	mW
P _{TOTAL}	Total power at nominal conditions	f _{DCLK} = 80 MHz		105	254.77	mW
CAPACITA	NCE	-				
C _{IN}	Input pin capacitance	f = 1 MHz			20	pF
C _A	Analog pin capacitance (TEMP_PLUS and TEMP_MINUS pins)	<i>f</i> = 1 MHz			65	pF
Co	Output pin capacitance	f = 1 MHz			20	pF

(7) The following power supplies are all required to operate the DMD: V_{DD}, V_{DDI}, V_{OFFSET}, V_{BIAS}, V_{RESET}. All V_{SS} connections are also required.

DLP3030-Q1

ZHCSHX4B-NOVEMBER 2017-REVISED JUNE 2019

6.7 Timing Requirements

Over Recommended Operating Conditions unless otherwise noted.

		MIN	NOM	MAX	UNIT
DMD M	IRROR AND SRAM CONTROL LOGIC SIGNALS			·	
t _{SU}	Setup time SAC_BUS low before SAC_CLK↑	1.0			ns
t _H	Hold time SAC_BUS low after SAC_CLK↑	1.0			ns
t _{SU}	Setup time DAD_BUS high before SAC_CLK↑	1.0			ns
t _H	Hold time DAD_BUS after SAC_CLK↑	1.0			ns
t _C	Cycle time SAC_CLK	12.5		16.67	ns
t _W	Pulse width 50% to 50% reference points: SAC_CLK high or low	5.0			ns
t _R	Rise time 20% to 80% reference points: SAC_CLK			2.5	ns
t _F	Fall time 80% to 20% reference points: SAC_CLK			2.5	ns
DMD D	ATA PATH AND LOGIC CONTROL SIGNALS			L.	
t _{SU}	Setup time DATA(14:0) before DCLK↑ or DCLK↓	1.0			ns
t _H	Hold time DATA(14:0) after DCLK↑ or DCLK↓	1.0			ns
t _{SU}	Setup time SCTRL before DCLK↑ or DCLK↓	1.0			ns
t _H	Hold time SCTRL after DCLK↑ or DCLK↓	1.0			ns
t _{SU}	Setup time TRC before DCLK↑ or DCLK↓	1.0			ns
t _H	Hold time TRC after DCLK↑ or DCLK↓	1.0			ns
t _{SU}	Setup time LOADB low before DCLK↑	1.0			ns
t _H	Hold time LOADB low after DCLK↓	1.0			ns
t _{SU}	Setup time RESET_STROBE high before DCLK↑	1.0			ns
t _H	Hold time RESET_STROBE after DCLK↑	3.5			ns
t _C	Cycle time DCLK	12.5		16.67	ns
t _W	Pulse width 50% to 50% reference points: DCLK high or low	5.0			ns
t _W (L)	Pulse width 50% to 50% reference points: LOADB low	7.0			ns
t _W (H)	Pulse width 50% to 50% reference points: RESET_STROBE high	7.0			ns
t _R	Rise time 20% to 80% reference points: DCLK, DATA, SCTRL, TRC, LOADB			2.5	ns
t _F	Fall time 80% to 20% reference points: DCLK, DATA, SCTRL, TRC, LOADB			2.5	ns
JTAG E	BOUNDARY SCAN CONTROL LOGIC SIGNALS			+	
f _{тск}	Clock frequency TCK			10	MHz
t _C	Cycle time TCK	100			ns
t _W	Pulse width 50% to 50% reference points: TCK high or low	10			ns
t _{SU}	Setup time TDI valid before TCK↑	5			ns
Ц	Hold time TDI valid after TCK↑	25			ns
tsu	Setup time TMS valid before TCK↑	5			ns
t _H	Hold time TMS valid after TCK↑	25			ns
t _R	Rise time 20% to 80% reference points: TCK, TDI, TMS			2.5	ns
t _R	Fall time 80% to 20% reference points: TCK, TDI, TMS			2.5	ns

Texas Instruments

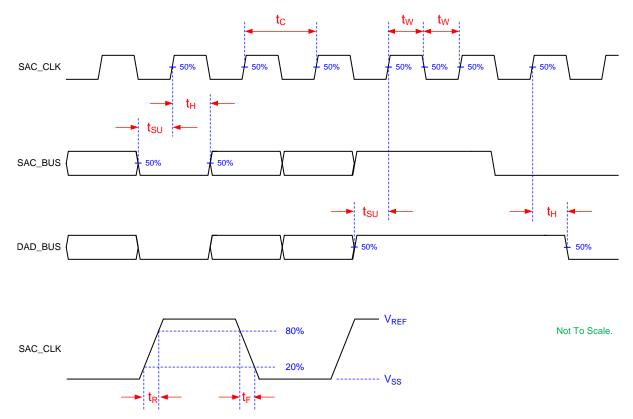


Figure 1. DMD Mirror and SRAM Control Logic Timing Requirements

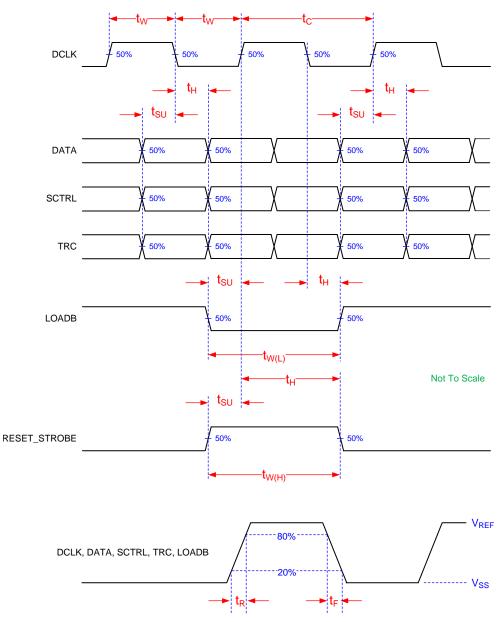


Figure 2. DMD Data Path and Control Logic Timing Requirements

\mathbf{t}_{VV} t_w \mathbf{t}_{C} тск 50% 50% 50% 50% t_H t_{SU} TDI 50% 50% TMS 50% 50% t_{PD} TDO 50% - VREF ____ 80% TCK, TDI, TMS

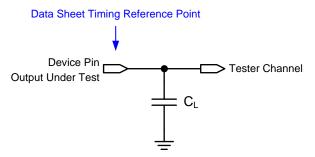
Figure 3. JTAG Boundary Scan Control Logic Timing Requirements

DLP3030-Q1

ZHCSHX4B-NOVEMBER 2017-REVISED JUNE 2019

www.ti.com.cn

ISTRUMENTS


XAS

6.8 Switching Characteristics⁽¹⁾

Over operating free-air temperature range (unless otherwise noted).

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PD}	Output propagation, clock to Q (see Figure 3)	C_L = 11 pF, from (Input) falling edge of TCK to (Output) TDO. See Figure 3.	3		25	ns

(1) Device electrical characteristics are over Recommended Operating Conditions unless otherwise noted.

See Micromirror Array section for more information.

Figure 4. Test Load Circuit for Output Propagation Measurement

6.9 System Mounting Interface Loads

PARAMETER	MIN	NOM	MAX	UNIT			
Condition 1:							
Uniformly distributed within the Thermal Interface Area shown in Figure 5			11.30	kg			
Uniformly distributed within the Electrical Interface Area shown in Figure 5			11.34	kg			
Condition 2:							
Uniformly distributed within the Thermal Interface Area shown in Figure 5			0	kg			
Uniformly distributed within the Electrical Interface Area shown in Figure 5			22.64	kg			

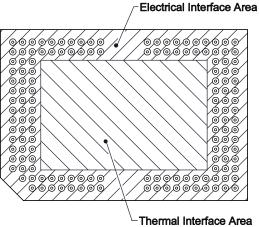


Figure 5. System Interface Loads

6.10 Physical Characteristics of the Micromirror Array

PARAMETER			UNIT
N Number of active columns	See Figure 6	684	micromirrors
M Number of active rows	See Figure 6	608	micromirrors
ε Micromirror (pixel) pitch – diagonal	See Figure 7	7.6	μm
P Micromirror (pixel) pitch – horizontal and vertical	See Figure 7	10.8	μm
Micromirror active array width	P × M + P / 2; see Figure 6	6.5718	mm
Micromirror active array height	(P × N) / 2 + P / 2; see Figure 6	3.699	mm
Micromirror active border	Pond of micromirror (POM) ⁽¹⁾	10	micromirrors/side

(1) The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

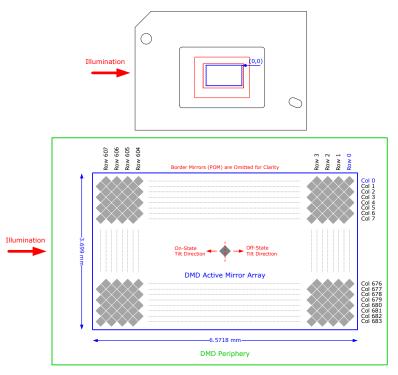


Figure 6. Micromirror Array Physical Characteristics

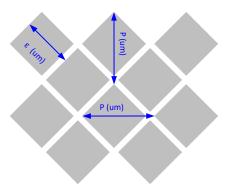


Figure 7. Mirror (Pixel) Pitch

TEXAS INSTRUMENTS

www.ti.com.cn

6.11 Optical Characteristics of the Micromirror Array

Table 1. Optical Parameters⁽¹⁾

	PARAMETER	MIN	NOM	MAX	UNIT
α	Micromirror Tilt Angle, landed (on-state or off-state) (see ⁽²⁾ and Figure 8)		12		o
β	Micromirror Tilt Angle Variation, device to device (see ⁽²⁾ and Figure 8)	-1		1	o
	DMD Efficiency, 420 nm – 680 nm (see ⁽³⁾)		66%		

(1) Optical parameters are characterized at 25°C.

- (2) Mirror Tilt: Limits on variability of mirror tilt are critical in the design of the accompanying optical system. Variations in tilt angle within a device may result in apparent non-uniformities, such as line pairing and image mottling, across the projected image especially at higher system F/#. Variations in the average tilt angle between devices may result in colorimetry, brightness, and system contrast variations.
- (3) DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency numbers are measured with 100% electronic mirror duty cycle and do not include system optical efficiency or overfill loss. Note that this number is measured under conditions described above and deviations from these specified conditions could result in a different efficiency value in a different optical system. The factors that can incluence the DMD efficiency related to system application include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the DMD efficiency factors that are not system dependent are described in detail in the DMD Optical Efficiency Application Note, which can be accessed by contacting TI Applications Engineering.

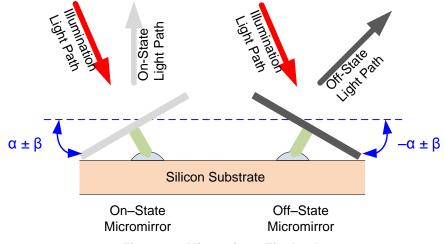


Figure 8. Micromirror Tilt Angle

6.12 Window Characteristics

PAR	MIN	NOM	MAX	UNIT	
Window material designation		Cor	ning Eagle XG		
Window refractive index	at wavelength 546.1 nm		1.5119		
Window aperture ⁽¹⁾				See (1)	

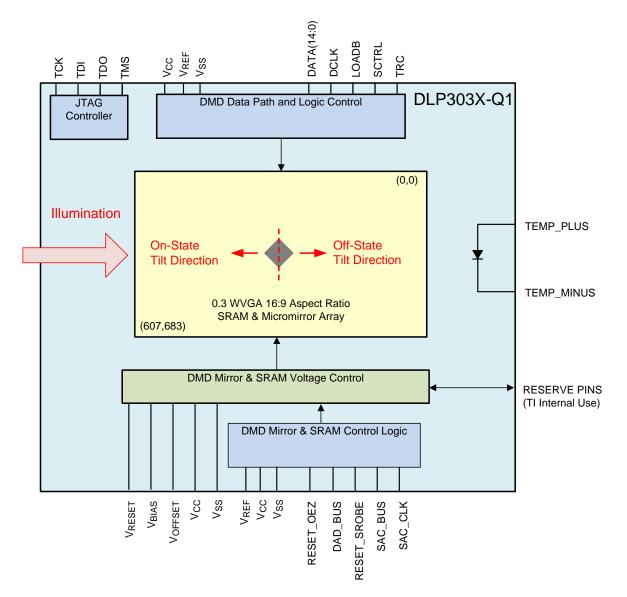
(1) See the package mechanical ICD for details regarding the size and location of the window aperture.

6.13 Chipset Component Usage Specification

The DLP3030-Q1 DMD is a component of the DLP® chipset including the DLPC120-Q1 DMD controller. Reliable function and operation of the DMD requires that it be used in conjunction with DLPC120-Q1 controller.

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously



7 Detailed Description

7.1 Overview

The DLP3030-Q1 DMD has a resolution of 608×684 mirrors configured in a diamond format that results in an aspect ratio of 16:9, which combined with the DLPC120-Q1 image processing creates an effective resolution of 864 × 480 square pixels. By configuring the pixels in a diamond format, the illumination input to the DMD enters from the side allowing for smaller mechanical packaging of the optical system. Additionally, side illumination can also enable increased optical efficiency compared to a corner illuminated square pixel design.

7.2 Functional Block Diagram

7.3 Feature Description

To ensure reliable operation, the DLP3030-Q1 DMD must be used with the DLPC120-Q1 DMD Display controller.

Feature Description (continued)

7.3.1 Micromirror Array

The DLP3030-Q1 DMD consists of a two-dimensional array of 1-bit CMOS memory cells that determine the state of the each of the 608×684 micromirrors in the array. Refer to Physical Characteristics of the Micromirror Array for a calculation of how the 608×684 micromirror array represents a 16:9 dimensional aspect ratio to the user. Each micromirror is either "ON" (tilted +12°) or "OFF" (tilted -12°). Combined with appropriate projection optical system the DMD can be used to create clear, colorful, and vivid digital images.

7.3.2 Double Data Rate (DDR) Interface

Each DMD micromirror and its associated SRAM memory cell is loaded with data from the DLPC120-Q1 via the DDR interface (DATA(14:0), DCLK, LOADB, SCRTL, and TRC). These signals are low voltage CMOS nominally operating at 1.8-V level to reduce power and switching noise. This high speed data input to the DMD allows for a maximum update rate of the entire micromirror array to be nearly 5 kHz, enabling the creation of seamless digital images using Pulse Width Modulation (PWM).

7.3.3 Micromirror Switching Control

Once data is loaded onto the DMD, the mirrors are caused to switch position (+12° or -12°) based on the timing signal sent to the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON to OFF, or stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and SAC_CLK, which are coordinated with the data loading by the DLPC120-Q1. In general, the DLPC120-Q1 loads the DMD SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch position.

At power down, the DMD Mirrors are commanded by the DLPC120-Q1 to move to a near flat (0°) position as shown in *Power Supply Recommendations* section. The flat state position of the DMD mirrors are referred to as the "Parked" state. To maintain long term DMD reliability, the DMD must be properly "Parked" prior to every power down of the DMD power supplies. Refer to the *DLPC120-Q1 Programmer's Guide* for information about properly parking the DMD.

7.3.4 DMD Voltage Supplies

The micromirrors switching requires unique voltage levels to control the mechanical switching. These voltages levels are nominally 16 V, 8.5 V, and –10 V (V_{BIAS} , V_{OFFSET} , and V_{RESET}). The specification values for V_{BIAS} , V_{OFFSET} , and V_{RESET} are shown in *Recommended Operating Conditions*.

7.3.5 Logic Reset

Reset of the DMD is required and controlled by the DLPC120-Q1.

7.3.6 Temperature Sensing Diode

The DMD includes a temperature sensing diode designed to be used with the TMP411-Q1 temperature monitoring device. The DLPC120-Q1 monitors the DMD array temperature via the TMP411-Q1 and temperature sense diode. The DLPC120-Q1 operation of the DMD is based in part on the DMD array temperature, and therefore, this connection is essential to ensure reliable operation of the DMD.

Figure 9 shows the typical connection between the DLPC120-Q1, TMP411-Q1, and the DLP3030-Q1 DMD. The signals to the temperature sense diode are sensitive to system noise, therefore, care should be taken in the routing and implementation of this circuit. See the *TMP411-Q1 Data Sheet* for detailed PCB layout recommendations.

Feature Description (continued)

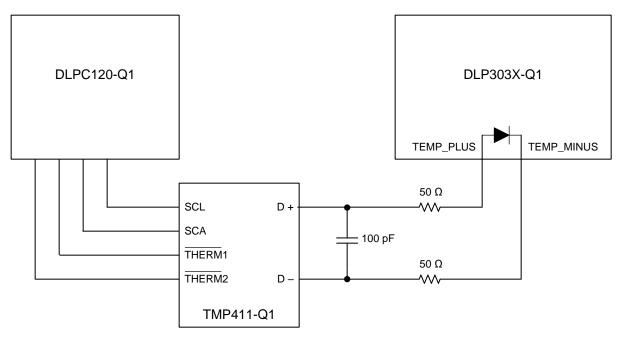


Figure 9. Temperature Sense Diode Typical Circuit Configuration

The DLPC120-Q1 automatically controls the DMD parking based on the temperature measured from the temperature sense diode; however, it is recommended that the host controller manage the parking via the proper methods described in the *DLPC120-Q1 Programmer's Guide*.

7.3.6.1 Temperature Sense Diode Theory

A temperature sensing diode is based on the fundamental current and temperature characteristics of a transistor. The diode is formed by connecting the transistor base to the collector. Two different known currents flow through the diode and the resulting diode voltage is measured in each case. The difference in their base-emitter voltages is proportional to the absolute temperature of the transistor.

Refer to the *TMP411-Q1 Data Sheet* for detailed information about temperature diode theory and measurement. Figure 10 and Figure 11 illustrate the relationship between the current and voltage through the diode.

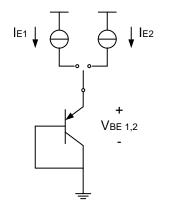


Figure 10. Temperature Measurement Theory

Feature Description (continued)

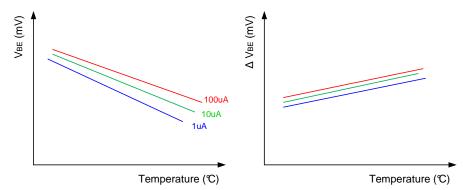


Figure 11. Example of Delta VBE vs Temperature

7.3.7 Active Array Temperature

NOTE

Calculation is not valid for a headlight application utilizing an optically underfilled active array. Contact TI Applications Engineering for array temperature calculation methods for headlight applications.

Active array temperature can be computed analytically from measurement points on the outside of the package, the package thermal resistance, the electrical power, and the illumination heat load.

Relationship between array temperature and the reference ceramic temperature (thermocouple location TP1 in Figure 12) is provided by the following equations.

 $T_{ARRAY} = T_{CERAMIC} + (Q_{ARRAY} \times R_{ARRAY-TO-CERAMIC})$

 $Q_{ARRAY} = Q_{ELECTRICAL} + Q_{ILLUMINATION}$

where

- T_{ARRAY} = computed DMD array temperature (°C)
- T_{CERAMIC} = measured ceramic temperature (TP1 location in Figure 12) (°C)
- R_{ARRAY-TO-CERAMIC} = DMD package thermal resistance from array to TP1 (°C/watt) (see *Thermal Information*)
- Q_{ARRAY} = total power, electrical plus absorbed, on the DMD array (watts)
- Q_{ELECTRICAL} = nominal electrical power dissipation by the DMD (watts)
- $Q_{ILLUMINATION} = (C_{L2W} \times S_L)$
- C_{L2W} = conversion constant for screen lumens to power on the DMD (watts/lumen)
- S_L = measured screen lumens (Im)

(2)

(1)

Electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies.

Absorbed power from the illumination source is variable and depends on the operating state of the mirrors and the intensity of the light source.

Equations shown previous are valid for a 1-Chip DMD system with total projection efficiency from DMD to the screen of 87%.

The constant C_{L2W} is based on the DMD array characteristics. It assumes a spectral efficiency of 300 lumens/watt for the projected light and illumination distribution of 83.7% on the active array, and 16.3% on the array border.

Sample calculation:

- S_I = 50 lm
- $C_{L2W} = 0.00293$
- Q_{ELECTRICAL} = 0.105 W

Texas Instruments

www.ti.com.cn

Feature Description (continued)

- R_{ARRAY-TO-CERAMIC} = 2.5°C/W
- T_{CERAMIC} = 55°C
- $Q_{ARRAY} = 0.105 \text{ W} + (0.00293 \times 50 \text{ Im}) = 0.252 \text{ W}$
- $T_{ARRAY} = 55^{\circ}C + (0.252 \text{ W} \times 2.5^{\circ}C/\text{W}) = 55.6^{\circ}C$

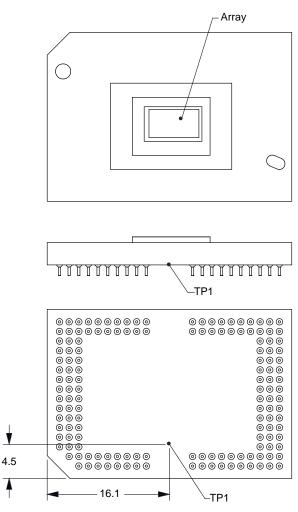


Figure 12. Thermocouple Locations

7.3.8 DMD JTAG Interface

The DMD uses 4 standard JTAG signals for sending and receiving boundary scan test data. TCK is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. TMS directs the next state of the TAP state machine. TDI is the scan data input and TDO is the scan data output.

The DMD does not support IEEE 1149.1 signals TRST (Test Logic Reset) and RTCK (Returned Test Clock). Boundary scan cells on the DMD are Observe-Only. To initiate the JTAG boundary scan operation on the DMD, a minimum of 6 TCK clock cycles are required after TMS is set to logic high.

Refer to Figure 13 for a JTAG system board routing example. The DLPC120-Q1 can be enabled to perform an in system boundary scan test. See *DLPC120-Q1 Programmer's Guide* for information about this test.

(3) (4)

Feature Description (continued)

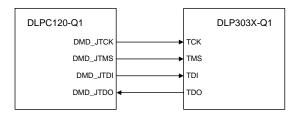


Figure 13. System Interface Connection to DLPC120-Q1

The DMD Device ID can be read via the JTAG interface. The ID and 32-bit shift order is shown in Figure 14.

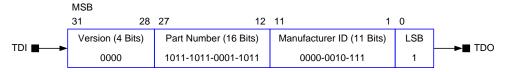


Figure 14. DMD Device ID and 32-bit Shift Order

Refer to Figure 15 for a JTAG boundary scan block diagram for the DMD. These show the pins and the scan order that are observed during the JTAG boundary scan.

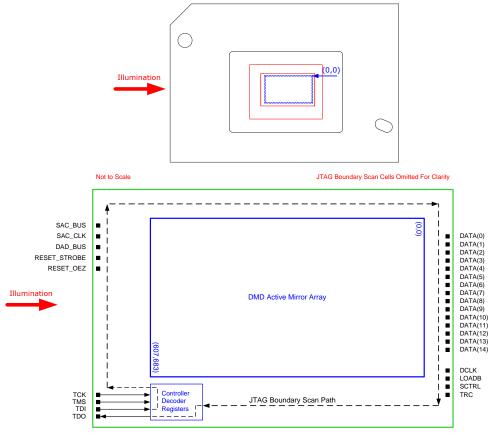
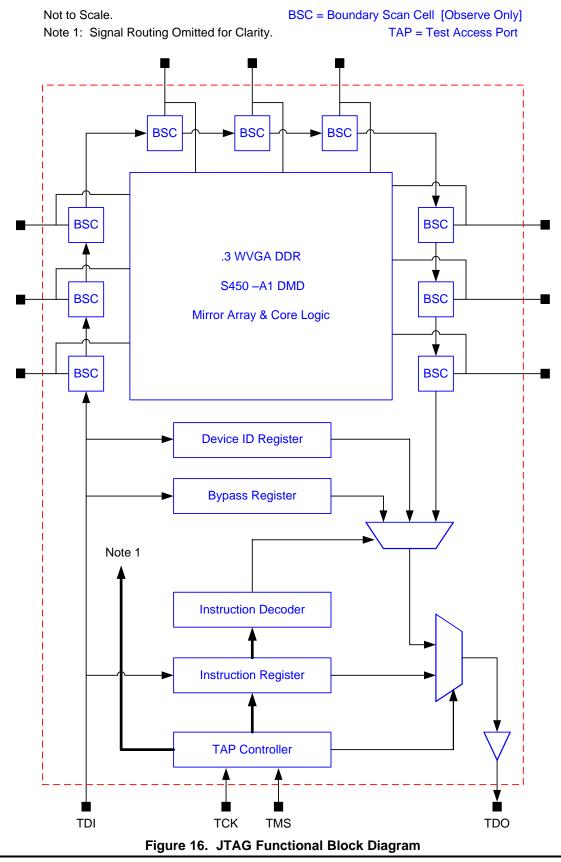



Figure 15. JTAG Boundary Scan Path

Refer to Figure 16 for a functional block diagram of the JTAG control logic.

Feature Description (continued)

7.4 Optical Performance

Optimizing system optical performance and image quality strongly relates to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described below.

7.4.1 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination and/or projection pupils to block flat-state and stray light from passing through the projection lens. The mirror tilt angle defines DMD capability to separate the "On" optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, contrast ratio can be reduced and objectionable artifacts in the image border and/or active area could occur.

7.4.2 Pupil Match

TI's optical and image quality specifications assume that the exit pupil of the illumination optics is nominally centered within two degrees of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the image border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

7.4.3 Illumination Overfill and Alignment

Overfill light illuminating the area outside the active array can create artifacts from the mechanical features and other surfaces that surround the active array. These artifacts may be visible in the projected image. The illumination optical system should be designed to minimize light flux incident outside the active array and on the window aperture. Depending on the particular system's optical architecture and assembly tolerances, this amount of overfill light on the area outside of the active array may still cause artifacts to be visible. Illumination light and overfill can also induce undesirable thermal conditions on the DMD, especially if illumination light impinges directly on the DMD window aperture or near the edge of the DMD window. Refer to *Recommended Operating Conditions* for a specification on this maximum allowable heat load due to illumination overfill.

NOTE

TI ASSUMES NO RESPONSIBILITY FOR IMAGE QUALITY ARTIFACTS OR DMD FAILURES CAUSED BY OPTICAL SYSTEM OPERATING CONDITIONS EXCEEDING LIMITS DESCRIBED ABOVE.

STRUMENTS

7.5 DMD Image Quality Specification

PARAMETER ⁽¹⁾	MIN NOM MAX	UNIT
Dark Blemishes ⁽²⁾	4	
Light Blemishes ⁽³⁾	4	
Border Artifacts ⁽⁴⁾	Allowed	
Minor Blemishes ⁽⁴⁾	Allowed	
Bright Pixels ⁽³⁾	0	
Dark Pixels ⁽⁵⁾⁽⁶⁾	4	
Pixel Clusters (Dark) ⁽⁶⁾	0	
Dark Pixels (Adjacent) (6)(5)	0	
Unstable Pixels ⁽⁴⁾	0	
Optical Performance	See Optical Performance	
Ambient Lighting Conditions	See ⁽⁷⁾	

(1) Blemish counts do not include reflections or shadows of the same artifact. Gray 10 linear gamma graphic is the darkest screen that can be used for IQ evaluation. Any artifact that is not specifically addressed in this table is acceptable unless mutually agreed to between DLP® Products and the customer. Viewing distance must be > 48 inches. Screen size should be similar to application image size. All values referenced are in linear gamma. Non-linear gamma curves may be running by default, and it should be ensured with a TI applications engineer that the equivalent linear gamma value as specified is used to judge artifacts.

- (2) Determined on Blue 60 linear gamma screen. Blemish cannot be darker than background.
- (3) Determined on Gray 10 linear gamma screen. Blemish cannot be lighter than background.
- (4) A Minor light blemish is any blemish that can be seen on a black screen but not a Gray 10 linear gamma screen. A Minor dark blemish is any blemish that can be seen on a white screen but not a Blue 60 linear gamma screen. Border artifacts, unstable pixels, and Active area shading are allowed unless visible on a screen brighter than Gray 10 linear gamma.
- (5) Dark pixels must be at least fifty (50) mirrors apart.
- (6) Determined on a White screen.
- (7) The parameters stated in DMD Image Quality Specification assume that the viewed images are set with a nominally adjusted brightness for ambient lighting condition. For example, if the ambient lighting conditions are very dark, such as night time conditions, then the image brightness level will be matched to nominal expected value as used in the end application. Similarly, if the ambient lighting conditions, then the image brightness may be adjusted to the nominal brightness level as would be expected in the end application.

7.6 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the ON state versus the amount of time the same micromirror is landed in the OFF state.

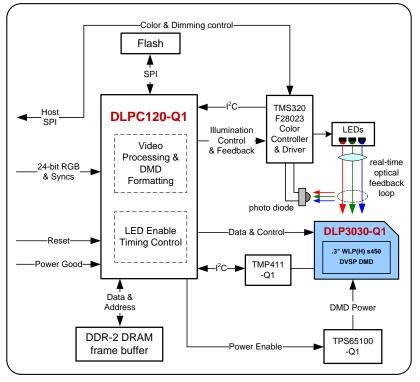
As an example, assuming a fully-saturated white pixel, a landed duty cycle of 90/10 indicates that the referenced pixel is in the ON state 90% of the time (and in the OFF state 10% of the time), whereas 10/90 would indicate that the pixel is in the OFF state 90% of the time. Likewise, 50/50 indicates that the pixel is ON 50% of the time and OFF 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Since a micromirror can only be landed in one state or the other (ON or OFF), the two numbers (percentages) always add to 100.

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DLP3030-Q1 DMD was designed to be used in automotive applications such as head-up display (HUD). The information shown in this section describes the HUD application based on the TI reference design. Contact TI application engineer for information on this design.

8.2 Typical Application

The DLP3030-Q1 DMD combined with the DLPC120-Q1 are the primary devices that make up the reference design for a HUD system as shown in the block diagram Figure 17.

Copyright © 2017, Texas Instruments Incorporated

Figure 17. HUD Reference Design Block Diagram

The DLPC120-Q1 accepts input video over the parallel RGB data interface up to 8 bits per color from a Video Graphics processor. The DLPC120-Q1 then processes the video data (864 × 480 manhattan orientation) by scaling the image to match the DMD resolution (608 × 684 diamond pixel), applies de-gamma correction, bezel adjustment, and then formats the data into DMD bit plane information and stores the data into the DDR2 DRAM. The DMD bit planes are read from DDR2 DRAM, and are then displayed on the DMD using Pulse Width Modulation (PWM) timing. The DLPC120-Q1 synchronizes the DMD bit plane data with the RGB enable timing for the LED color controller and Driver circuit. Finally, the DMD accepts the bit plane formatted data from the DLPC120-Q1 and displays the data according to the timing controlled by the DLPC120-Q1.

Typical Application (continued)

Due to the mechanical nature of the micromirrors, the latency of the DLP3030-Q1 and DLPC120-Q1 chipset is fixed across all temperature and operating conditions. The observed video latency is one frame, or 16.67 ms at an input frame rate of 60 Hz. However, please note that the use of the DLPC120-Q1 bezel adjustment feature, if enabled by the host controller, requires an additional frame of processing.

The DLPC120-Q1 is configured at power up by data stored in the flash file which stores configuration data, DMD and sequence timing information, LED drive information, and other information related to the system functions. See the *DLPC120-Q1 Programmer's Guide* for information about the this flash configuration data.

The HUD reference design from TI includes the TMS320F28023 Microcontroller (Piccolo) which is used to control the color point by adjusting the RGB flux levels, and drives each RGB LED. This circuit also manages the dimming function for the HUD system. The dimming level of a HUD system requires very large dynamic range of over 5000:1. For example, on a bright day, the HUD system may require a brightness level as high as 15,000 cd/m² and conversely at night time the minimum brightness level desired may only be 3 cd/m².

8.2.1 HUD Reference Design and LED Controller Reference Design

The complete HUD reference design is available from TI, including electronics (Schematic) and PCB (Gerber) design, opto-mechanical design (CAD and Zemax models), sample software, and other system reference design documentation. Additionally, there are application notes describing the Piccolo LED driver and color control circuit. **Contact TI application engineering for access to these application notes and design information**.

8.3 Application Mission Profile Consideration

Each application is anticipated to have different mission profiles, or number of operating hours at different temperatures. To assist in evaluation, the Application Report *Reliability Lifetime Estimates for the DLP3030-Q1 DMD in Automotive Applications* may be provided if requested.

9 Power Supply Recommendations

9.1 Power Supply Sequencing Requirements

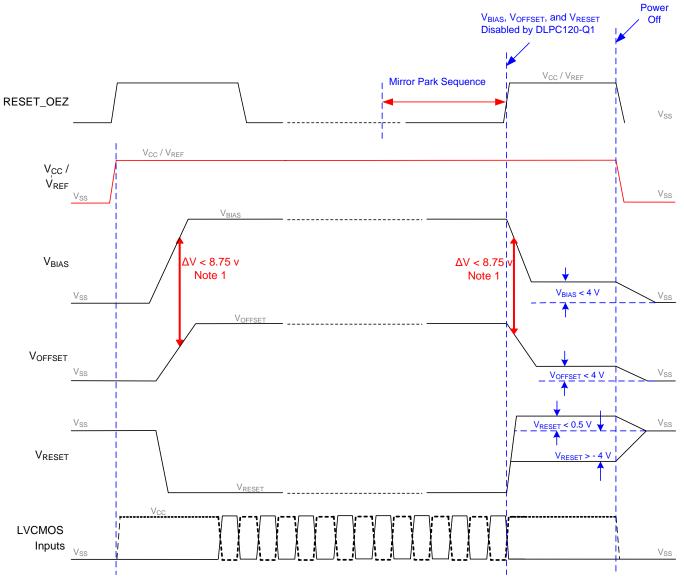
• V_{BIAS}, V_{CC}, V_{OFFSET}, V_{REF}, V_{RESET}, V_{SS} are required to operate the DMD.

CAUTION

- For reliable operation of the DMD, the following power supply sequencing requirements must be followed. Failure to adhere to the prescribed power up and power down procedures may affect device reliability.
- The V_{CC}, V_{REF}, V_{OFFSET}, V_{BIAS}, and V_{RESET} power supplies have to be coordinated during power up and power down operations. Failure to meet any of the below requirements will result in a significant reduction in the DMD's reliability and lifetime. Refer to Figure 18. V_{SS} must also be connected.

DMD Power Supply Power Up Procedure:

- During power up, V_{CC} and V_{REF} must always start and settle before V_{OFFSET} , V_{BIAS} and V_{RESET} voltages are applied to the DMD.
- During power up, V_{BIAS} does not have to start after V_{OFFSET}. However, it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within ±8.75 V (refer to Note 1 for Figure 18).
- During power up, the DMD's LVCMOS input pins shall not be driven high until after V_{CC} and V_{REF} have settled at operating voltage.
- During power up, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS}.
- Power supply slew rates during power up are flexible, provided that the transient voltage levels follow the requirements listed above and in *Recommended Operating Conditions* and in Figure 18.


DMD Power Supply Power Down Procedure

- V_{CC} and V_{REF} must be supplied until after V_{BIAS}, V_{RESET} and V_{OFFSET} are discharged to within 4 V of ground.
- During power down it is not mandatory to stop driving V_{BIAS} prior to V_{OFFSET}, but it is a strict requirement that the delta between V_{BIAS} and V_{OFFSET} must be within ± 8.75 V (refer to Note 1 for Figure 18).
- During power down, the DMD's LVCMOS input pins must be less than V_{REF} + 0.3 V.
- During power down, there is no requirement for the relative timing of V_{RESET} with respect to V_{OFFSET} and V_{BIAS}.
- Power supply slew rates during power down are flexible, provided that the transient voltage levels follow the requirements listed above in *Recommended Operating Conditions* and in Figure 18.

Power Supply Sequencing Requirements (continued)

9.1.1 Power Up and Power Down

(1) ±8.75-V delta, ∆V, shall be considered the max operating delta between V_{BIAS} and V_{OFFSET}. Customers may find that the most reliable way to ensure this is to power V_{OFFSET} prior to V_{BIAS} during power up and to remove V_{BIAS} prior to V_{OFFSET} during power down.

Figure 18. Power Supply Sequencing Requirements (Power Up and Power Down)

10 Layout

10.1 Layout Guidelines

Refer to *DLPC120-Q1 Data Sheet* for specific PCB layout and routing guidelines. For specific DMD PCB guidelines, use the following:

- V_{CC} should have at least one 2.2-µF and four 0.1-µF capacitors evenly distributed among the 13 V_{CC} pins.
- A 0.1-μF, X7R rated capacitor should be placed near every pin for the V_{REF}, V_{BIAS}, V_{RSET}, and V_{OFF}.

10.2 Temperature Diode Pins

The DMD has an internal diode (PN junction) that is intended to be used with an external TI TMP411-Q1 temperature sensing IC. PCB traces from the DMD's temperature diode pins to the TMP411-Q1 are sensitive to noise. See the *TMP411-Q1 Data Sheet* for specific routing recommendations.

Avoid routing the temperature diodes signals near other traces to avoid coupling of noise onto these signals.

10.3 Layout Example

Contact TI Application Engineering for access to the complete TI reference design PCB layout.

DLP3030-Q1

ZHCSHX4B-NOVEMBER 2017-REVISED JUNE 2019

www.ti.com.cn

11 器件和文档支持

- 11.1 器件支持
- 11.1.1 器件命名规则

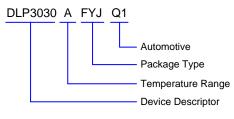
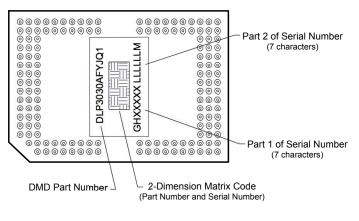


图 19. 器件型号 说明


11.1.2 器件标记

下面显示了器件标记。该标记将包括可读信息和一个二维矩阵码。

下面显示了可读信息。二维矩阵码是一个字母数字字符串,其中包含 DMD 部件号、序列号的第 1 部分和第 2 部分。

DMD 序列号(第 1 部分)的第一个字符为制造年份。DMD 序列号(第 1 部分)的第二个字符为制造月份。 DMD 序列号(第 2 部分)的最后一个字符为偏置电压二进制字母。

示例: *DLP3030AFYJQ1 GHXXXXX LLLLLLM

下面显示了 DLP3030-Q1 器件的三维建模描述。

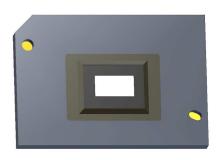


图 21. DLP3030-Q1的图像

11.2 文档支持

11.2.1 相关文档

如需相关文档,请参阅:

- DLPC120-Q1 产品文件夹,以获取 DLPC120-Q1 数据表
- 《TMS320F2802x Piccolo™ 微控制器》
- 《具有 N 因数和串联电阻校正的 TMP411-Q1 ±1℃ 远程和本地温度传感器》

11.3 接收文档更新通知

要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 社区资源

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.5 商标

E2E is a trademark of Texas Instruments.

DLP is a registered trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

这些伤。

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。

11.7 器件处理

DMD 是光学器件,故应注意避免损坏玻璃窗口。有关正确处理 DMD 的说明,请参阅《DMD 处理应用手册》。

11.8 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更, 恕不另行通知, 且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	e Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DLP3030AFYJQ1	ACTIVE	CPGA	FYJ	149	33	RoHS & Green	Call TI	N / A for Pkg Type	-40 to 105		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021,德州仪器 (TI) 公司