

Now

DLP9500UV

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

DLP9500UV DLP[®] 0.95 UV 1080p 2x LVDS A 型 DMD

"为选定的器件提供了汽车级版本" 1

0.95 英寸对角线微镜阵列

INSTRUMENTS

Texas

- 1920 × 1080 铝阵列, 微米级微镜(1080p 分 辨率)
- 10.8µm 微镜间距
- ±12°微镜倾斜角(相对于平板状态)
- 设计用于边缘照明
- 专用于紫外光 (363nm 至 420nm):
 - 窗口传输效率 98% (单通、通过双窗面) (标 称值)
 - 微镜反射率 88% (标称值)
 - 阵列衍射效率 85%(标称值)
 - 阵列填充因子 92% (标称值)
- 四条 16 位低压差分信令 (LVDS)、双倍数据速率 (DDR) 输入数据总线
- 高达 400MHz 的输入数据时钟速率
- 42.2mm × 42.2mm × 7mm 封装尺寸
- 气密封装 ٠
- 2 应用
- 工业:
 - 直接成像平版印刷术
 - 激光打标和修复系统
 - 计算机直接制版打印机
 - 快速打印原型机
 - 3D 打印机
- 医疗:
 - 眼科
 - 光化疗法
 - 高光谱成像

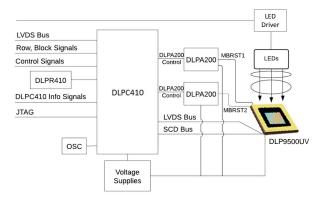
3 说明

DLP9500UV 是一款数控微光机电系统 (MEMS) 空间 照明调制器 (SLM)。当与适当的光系统成对使用 时,DLP9500UV可用于调制入射光的振幅、方向和/ 或相位。

DLP95000UV 芯片组作为 DLP[®] Discovery™ 4100 平 台新增的数字微镜器件 (DMD),可支持高分辨率,并 可在深入 UVA 光谱(363nm 至 420nm)的可见光谱 之外实现高性能的空间光调制。DLP9500UV DMD 设 计采用了针对 UV 透射进行优化的特殊窗口。

DLP9500UV 是一款采用密封封装的 0.95 1080p DMD,与一个专用 DLPC410 控制器(用于支持大于 23000Hz(1位二进制)和大于 1700Hz(8位灰度) 的高速图形速率)、一个 DLPR410 单元(DLP Discovery 4100 配置 PROM) 和两个 DLPA200 单元 (DMD 微镜驱动器) 配套出售。请参阅 DLPC410、 DLPA200、DLPR410 和 DLP9500UV 功能框图。

DLP9500UV 需要与芯片组的其他元件结合使用才能实 现可靠功能和操作。一套专用的芯片组能够使开发人员 更加轻松地访问 DMD 并使用高速而独立的微镜控制。


DLP9500UV 是一款数控微光机电系统 (MEMS) 空间 照明调制器 (SLM)。当与适当的光系统成对使用 时, DLP9500UV 可用于调制入射光的振幅、方向和/ 或相位。

器件信息(1)

部件号	封装	封装尺寸(标称值)						
DLP9500UV	LCCC (355)	42.16mm × 42.16mm x 7.00mm						

(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。

简化电路原理图

ZHCSE69C - NOVEMBER 2014 - REVISED MARCH 2017

目录

1	"为选定的器件提供了汽车级版本"1
2	应用1
3	说明1
4	修订历史记录 2
5	说明(续)
6	Pin Configuration and Functions 4
7	Specifications
	7.1 Absolute Maximum Ratings 13
	7.2 Storage Conditions 13
	7.3 ESD Ratings 13
	7.4 Recommended Operating Conditions 14
	7.5 Thermal Information 15
	7.6 Electrical Characteristics 15
	7.7 LVDS Timing Requirements 16
	7.8 LVDS Waveform Requirements 17
	7.9 Serial Control Bus Timing Requirements 18
	7.10 Systems Mounting Interface Loads 19
	7.11 Micromirror Array Physical Characteristics 20
	7.12 Micromirror Array Optical Characteristics 21
	7.13 Chipset Component Usage Specification 22
8	Detailed Description 23
	8.1 Overview 23
	8.2 Functional Block Diagram 23

	8.3	Feature Description 25
	8.4	Device Functional Modes
	8.5	Window Characteristics and Optics 34
	8.6	Micromirror Array Temperature Calculation 35
	8.7	Micromirror Landed-On and Landed-Off Duty
		Cycle 37
9	Appl	ication and Implementation 39
	9.1	Application Information 39
	9.2	Typical Application 41
10	Pow	er Supply Recommendations 43
	10.1	Power-Up Sequence (Handled by the DLPC410) 43
	10.2	DMD Power-Up and Power-Down Procedures 43
11	Layo	out 44
	11.1	Layout Guidelines 44
	11.2	Layout Example 46
12	器件	和文档支持 47
	12.1	器件支持 47
	12.2	文档支持
	12.3	相关链接 48
	12.4	社区资源 48
	12.5	商标
	12.6	静电放电警告 48
	12.7	Glossary 48
13	机械	、封装和可订购信息 48

4 修订历史记录

CI	hanges from Revision B (June 2015) to Revision C	Page
•	Changed the name of Micromirror clocking pulse reset in Pin Functions	11
•	Changed T _{GRADIENT} from 5°C to 10°C to accommodate increase in power density from 400 to 420 nm in <i>Absolute</i> <i>Maximum Ratings</i>	13
•	Added RH name for relative humidity in Absolute Maximum Ratings	13
•	Clarified T _{GRADIENT} footnote in Absolute Maximum Ratings	13
•	Changed T _{stg} to T _{DMD} in Storage Conditions to conform to current nomenclature	13
•	Added Maximum illumination power values for 363 to 400 nm, 400 to 420 nm, and 363 to 420 nm total power values in <i>Recommended Operating Conditions</i>	14
•	Changed 363 to 420 nm to 363 to 400 nm max for 2.5 W/cm ² power density and 6 W max optical power in <i>Recommended Operating Conditions</i>	14
•	Added 400 to 420 nm max power density of 11 W/cm ² and max optical power of 26.6 W	14
•	Added 363 to 420 nm total integrated max power density of 11 W/cm ² and total integrated max optical power of 26.6 W	14
•	Changed typical micromirror crossover time to the time required to transition from mirror position to the other in Micromirror Array Optical Characteristics	21
•	Added typical micromirror switching time - 13 µs in Micromirror Array Optical Characteristics	21
•	Changed "Micromirror switching time" to "Array switching time" for clarity in Micromirror Array Optical Characteristics.	21
•	Added clarification to Micromirror switching time at 400 MHz with global reset in Micromirror Array Optical	
	Characteristics	21
•	Corrected number of banks of DMD mirrors to 15 in Device Description	42
•	在 <i>相关文档</i> 中删除了 DLP Discovery 4100 芯片组产品说明书的链接	48
•	已添加 <i>相关链接</i> 表	48

www.ti.com.cn

2

Changes from Revision A (June 2015) to Revision B

•	发布完整版产品说明书并将器件状态更新为生产数据	1
•	在器件信息 中的封装尺寸中添加了 7.00mm 测量值	1
•	Added environmental parameters to Absolute Maximum Ratings	13
•	Moved V _{ESD} to ESD Ratings	13
•	Updated the MAX value of the illumination power density for >420 nm in Recommended Operating Conditions	14
•	Added new notes to Recommended Operating Conditions	14
•	Added new note to Thermal Information	15
•	Replaced Figure 3.	18
•	Changed units in Systems Mounting Interface Loads from lbs to N.	19
•	Added Chipset Component Usage Specification	22
•	Corrected 6.33 W to 6.83 W in T _{Array} sample calculation	36
•	Updated Figure 20	43
•	Removed Thermal Considerations	46

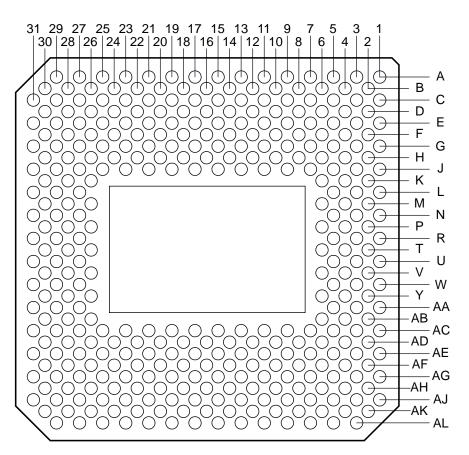
Changes from Original (November 2014) to Revision A

•	将器件状态更新为产品预览以进行发布	. 1
•	已更新首页图形	. 1
•	已添加 社区资源	48

Texas NSTRUMENTS

www.ti.com.cn

Page



5 说明 (续)

电子方面, DLP9500UV 由 1 位 CMOS 存储器单元的两维阵列组成,其组织结构为 1920 存储器单元列乘以 1080 存储器单元行的栅格。CMOS 存储器阵列通过四条 16 位低压差分信令 (LVDS) 双倍数据速率 (DDR) 总线逐行进行 寻址。寻址通过串行控制总线处理。特定的 CMOS 存储器访问协议由 DLPC410 数字控制器处理。

6 Pin Configuration and Functions

FLN Package 355-Pin LCCC Bottom View

XAS

STRUMENTS

Pin Functions									
PIN	1	TYPE	SIGNAL			CLOCK	DESCRIPTION	TRACE	
NAME DATA BUS A	NO.	(I/O/P)		RATE ⁽²⁾	TERM ⁽³⁾			(MILS)	
D_AN(0)	F2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		512.01	
D_AN(1)	H8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	158.79	
D_AN(2)	E5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	471.24	
D_AN(3)	G9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	-	159.33	
D_AN(4)	D2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		585.41	
D_AN(5)	G3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		551.17	
D_AN(6)	E11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		229.41	
D_AN(7)	F8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		300.54	
D_AN(8)	C9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		346.35	
D_AN(9)	H2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		782.27	
D_AN(10)	B10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		451.52	
D_AN(11)	G15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		74.39	
D_AN(12)	D14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		194.26	
D_AN(13)	F14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	Input data bus A (2x LVDS)	148.29	
D_AN(14)	C17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		244.9	
D_AN(15)	H16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		73.39	
D_AP(0)	F4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		509.63	
D_AP(1)	H10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		152.59	
D_AP(2)	E3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	_	464.09	
D_AP(3)	G11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	_	152.39	
D_AP(4)	D4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		591.39	
D_AP(5)	G5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		532.16	
D_AP(6)	E9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	_	230.78	
D_AP(7)	F10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		300.61	
D_AP(8)	C11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		338.16	
D_AP(9)	H4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		773.17	
D_AP(10)	B8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A		449.57	

The following power supplies are required to operate the DMD: VCC, VCC1, VCC2. VSS must also be connected.
 DDR = Double Data Rate. SDR = Single Data Rate. Refer to the *LVDS Timing Requirements* for specifications and relationships.
 Refer to *Electrical Characteristics* for differential termination specification.

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

www.ti.com.cn

INSTRUMENTS

Texas

Pin Functions (continued)

Pin Functions (continued)										
	TYPE	SIGNAL			CLOCK	DESCRIPTION	TRACE (MILS)			
		LVCMOS		Differentially	DCLK A		71.7			
	•			Differentially	_	-	198.69			
	•			Differentially	_	Input data bus A	143.72			
	•			Differentially	_	(2x LVDS)	240.14			
	•			terminated – 100 Ω Differentially	_	_				
GI7	input	LVCIVIOS	DDR	terminated – 100 Ω	DCLK_A		74.05			
AH2	Input	LVCMOS	DDR	Differentially			525.25			
	•			Differentially		_	190.59			
	•			Differentially	_	_	525.25			
	•			terminated – 100 Ω Differentially	_	-				
AE3	Input	LVCMOS	DDR	terminated – 100 Ω	DCLK_B	_	494.91			
AG9	Input	LVCMOS	DDR	terminated – 100 Ω	DCLK_B	-	222.67			
AE11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	_	205.45			
AH10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	_	309.05			
AF10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		285.62			
AK8	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	_	483.58			
AG5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		711.58			
AL11	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	462.21			
AE15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	74.39			
AH14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Input data bus B (2x LVDS)	194.26			
AF14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		156			
AJ17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	247.9			
AD16	Input	LVCMOS	DDR	Differentially	DCLK_B	-	111.52			
AH4	Input	LVCMOS	DDR	Differentially	DCLK_B	-	525.02			
AD10	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	-	190.61			
AJ3	Input	LVCMOS	DDR	Differentially	DCLK_B	-	524.22			
AE5	Input	LVCMOS	DDR	Differentially	DCLK_B		476.07			
AG11	Input	LVCMOS	DDR	Differentially	DCLK_B		222.8			
AE9	Input	LVCMOS	DDR	Differentially	DCLK_B		219.48			
AH8	Input	LVCMOS	DDR	Differentially	DCLK_B		306.55			
AF8	Input	LVCMOS	DDR	Differentially	DCLK_B		298.04			
AK10	Input	LVCMOS	DDR	Differentially	DCLK_B	-	480.31			
	AE11 AH10 AF10 AF10 AK8 AG5 AL11 AE15 AH14 AF14 AJ17 AD16 AH4 AD10 AJ3 AE5 AG11 AE9 AH8 AF8	NO.(VO/P)H14InputD16InputF16InputG17InputG17InputAH2InputAB8InputAB8InputAG9InputAE11InputAF10InputAK8InputAK8InputAG9InputAH10InputAF10InputAK8InputAK8InputAG5InputAH10InputAF10InputAK8InputAG5InputAK8InputAE15InputAE15InputAG5InputAG5InputAH14InputAF14InputAH15InputAH16InputAH17InputAH18InputAF8Input	TYPE NO.TYPE (VO/P)SIGNALNO.InputLVCMOSH14InputLVCMOSD16InputLVCMOSF16InputLVCMOSG17InputLVCMOSG17InputLVCMOSAH2InputLVCMOSAB8InputLVCMOSAA5InputLVCMOSAG9InputLVCMOSAF10InputLVCMOSAF10InputLVCMOSAF10InputLVCMOSAF10InputLVCMOSAF11InputLVCMOSAA5InputLVCMOSAAF10InputLVCMOSAAF11InputLVCMOSAAF10InputLVCMOSAAF11InputLVCMOSAAF14InputLVCMOSAA117InputLVCMOSAA117InputLVCMOSAA117InputLVCMOSAA13InputLVCMOSAA5InputLVCMOSAA5InputLVCMOSAA11InputLVCMOSAA11InputLVCMOSAA13InputLVCMOSAA5InputLVCMOSAA5InputLVCMOSAA5InputLVCMOSAA13InputLVCMOSAA5InputLVCMOSAA5InputLVCMOSAA5InputLVCMOSAA5InputLVCMOS	TYPE NO.TYPE (VO/P)SIGNALDATA RATE (2)H14InputLVCMOSDDRD16InputLVCMOSDDRF16InputLVCMOSDDRG17InputLVCMOSDDRG17InputLVCMOSDDRAH2InputLVCMOSDDRAB8InputLVCMOSDDRAA5InputLVCMOSDDRAA5InputLVCMOSDDRAA63InputLVCMOSDDRAA5InputLVCMOSDDRAA63InputLVCMOSDDRAA63InputLVCMOSDDRAA63InputLVCMOSDDRAA611InputLVCMOSDDRAA65InputLVCMOSDDRAA65InputLVCMOSDDRAA65InputLVCMOSDDRAA65InputLVCMOSDDRAA61InputLVCMOSDDRAA117InputLVCMOSDDRAA117InputLVCMOSDDRAA117InputLVCMOSDDRAA117InputLVCMOSDDRAA61InputLVCMOSDDRAA61InputLVCMOSDDRAA63InputLVCMOSDDRAA61InputLVCMOSDDRAA61InputLVCMOSDDRAA63InputLVCMOSDDRAA63InputLVCMOSDDR	TYPE SIGNAL DATA RATE (a) INTERNAL TERM (b) H14 Input LVCMOS DDR Differentially terminated – 100 Ω D16 Input LVCMOS DDR Differentially terminated – 100 Ω F16 Input LVCMOS DDR Differentially terminated – 100 Ω G17 Input LVCMOS DDR Differentially terminated – 100 Ω AH2 Input LVCMOS DDR Differentially terminated – 100 Ω AB8 Input LVCMOS DDR Differentially terminated – 100 Ω AB3 Input LVCMOS DDR Differentially terminated – 100 Ω AB3 Input LVCMOS DDR Differentially terminated – 100 Ω AE3 Input LVCMOS DDR Differentially terminated – 100 Ω AE11 Input LVCMOS DDR Differentially terminated – 100 Ω AF10 Input LVCMOS DDR Differentially terminated – 100 Ω AF11 Input LVCMOS DDR Differentially terminated – 100 Ω	Φ) TYPE (VO/P) SIGNAL DATA RATE (9) INTERNAL TERM (9) CLOCK H14 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_A D16 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_A C15 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_A G17 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_A AH2 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B AD8 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B A453 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B A453 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B A453 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B A451 Input LVCMOS DDR Differentially terminated -100 Ω DCLK_B A451	0 TYPE INC. SIGNAL RATE RATE INTERNAL TERN B CLOCK DESCRIPTION H14 Input LVCMOS DDR Differentially terminated -100.0 DCLK.A D16 Input LVCMOS DDR Differentially terminated -100.0 DCLK.A F16 Input LVCMOS DDR Differentially terminated -100.0 DCLK.A G17 Input LVCMOS DDR Differentially terminated -100.0 DCLK.A AH2 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B AA5 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B AA5 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B AA5 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B AA69 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B AA110 Input LVCMOS DDR Differentially terminated -100.0 DCLK.B <td< td=""></td<>			

Copyright © 2014–2017, Texas Instruments Incorporated

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

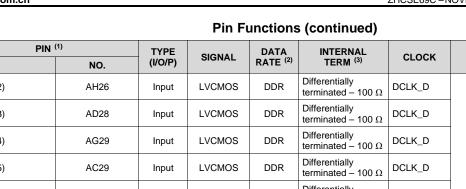
	PIN ⁽¹⁾ TYPE DATA INTERNAL TRACE										
NO.	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE (MILS)				
AG3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		727.18				
AL9	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		461.02				
AD14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Input data bus B	71.35				
AH16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		197.69				
AF16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		150.38				
AJ15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		243.14				
AE17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B		113.36				
I	- 1	1			I						
B14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		459.04				
E15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		342.79				
A17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		456.22				
G21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		68.24				
B20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		362.61				
F20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		163.07				
D22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		204.16				
G23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		105.59				
B26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		450.51				
F28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		302.04				
C29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Input data bus C	429.8				
G27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	(2x LVDS)	317.1				
D26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		276.76				
H28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		186.78				
E29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		311.3				
J29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		262.62				
B16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	-	463.64				
E17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		347.65				
A15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		456.45				
H20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		67.72				
B22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		362.76				
F22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	-	161.69				
	AG3 AL9 AD14 AH16 AF16 AJ15 AE17 B14 E15 A17 G21 B20 F20 D22 G23 B20 F20 C29 G21 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 G21 C29 C29 C29 C20 C29 C20 C29 C20 C29 C20 C29 C20 C29 C20 C20 C20 C20 C20 C20 C20 C20 C20 C20	AG3InputAL9InputAD14InputAH16InputAF16InputAF16InputAF16InputAE17InputB14InputG21InputB20InputG21InputG23InputG23InputG23InputG24InputG25InputG26InputG27InputG27InputG28InputG29InputG29InputG21InputG23InputG23InputG24InputG25InputG26InputG27InputG28InputG29InputG29InputG21InputG23InputG24InputG25InputG26InputG27InputG28InputG29InputG29InputG29InputG21InputG23InputG24InputG25InputG26InputG27InputG28InputG29InputG29InputG29InputG29InputG29InputG20InputG21InputG22Input <t< td=""><td>NO.(UOP)AG3InputLVCMOSAL9InputLVCMOSAD14InputLVCMOSAH16InputLVCMOSAF16InputLVCMOSAJ15InputLVCMOSAE17InputLVCMOSB14InputLVCMOSG21InputLVCMOSB20InputLVCMOSB20InputLVCMOSG21InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG24InputLVCMOSG25InputLVCMOSG26InputLVCMOSG27InputLVCMOSH28InputLVCMOSH28InputLVCMOSH29InputLVCMOSH20InputLVCMOSH20InputLVCMOSH20InputLVCMOSH20InputLVCMOS</td><td>NO.UVDP)KRTE SAG3InputLVCMOSDDRAL9InputLVCMOSDDRAD14InputLVCMOSDDRAH16InputLVCMOSDDRAH16InputLVCMOSDDRAF16InputLVCMOSDDRAJ15InputLVCMOSDDRAE17InputLVCMOSDDRB14InputLVCMOSDDRB14InputLVCMOSDDRB14InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB21InputLVCMOSDDRB22InputLVCMOSDDRB23InputLVCMOSDDRB24InputLVCMOSDDRB25InputLVCMOSDDRB26InputLVCMOSDDRB27InputLVCMOSDDRB28InputLVCMOSDDRB29InputLVCMOSDDRB16InputLVCMOSDDR</td></t<> <td>NO. (UUT) KATE 00 LEKK 10 AG3 Input LVCMOS DDR Differentially terminated = 100 Ω AL9 Input LVCMOS DDR Differentially terminated = 100 Ω AD14 Input LVCMOS DDR Differentially terminated = 100 Ω AH16 Input LVCMOS DDR Differentially terminated = 100 Ω AF16 Input LVCMOS DDR Differentially terminated = 100 Ω AL15 Input LVCMOS DDR Differentially terminated = 100 Ω AE17 Input LVCMOS DDR Differentially terminated = 100 Ω B14 Input LVCMOS DDR Differentially terminated = 100 Ω A17 Input LVCMOS DDR Differentially terminated = 100 Ω B20 Input LVCMOS DDR Differentially terminated = 100 Ω G21 Input LVCMOS DDR Differentially terminated = 100 Ω G22 Input LVCMOS DDR Differentially terminated = 100 Ω</td> <td>NO.(UOP)INALEOTHERM TOAG3InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAL9InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAD14InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAJ15InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CAE17InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CE15InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG21InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG21InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG23InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_C<td>NC.UOUPYICANRATE ofDifferentially Uterminated - 100 ΩDCLK_BAG3inputLVCMOSDDRDifferentially Uterminated - 100 ΩDCLK_BAL19inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAD14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH17inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB20inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF22InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDR<</td></td>	NO.(UOP)AG3InputLVCMOSAL9InputLVCMOSAD14InputLVCMOSAH16InputLVCMOSAF16InputLVCMOSAJ15InputLVCMOSAE17InputLVCMOSB14InputLVCMOSG21InputLVCMOSB20InputLVCMOSB20InputLVCMOSG21InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG23InputLVCMOSG24InputLVCMOSG25InputLVCMOSG26InputLVCMOSG27InputLVCMOSH28InputLVCMOSH28InputLVCMOSH29InputLVCMOSH20InputLVCMOSH20InputLVCMOSH20InputLVCMOSH20InputLVCMOS	NO.UVDP)KRTE SAG3InputLVCMOSDDRAL9InputLVCMOSDDRAD14InputLVCMOSDDRAH16InputLVCMOSDDRAH16InputLVCMOSDDRAF16InputLVCMOSDDRAJ15InputLVCMOSDDRAE17InputLVCMOSDDRB14InputLVCMOSDDRB14InputLVCMOSDDRB14InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB20InputLVCMOSDDRB21InputLVCMOSDDRB22InputLVCMOSDDRB23InputLVCMOSDDRB24InputLVCMOSDDRB25InputLVCMOSDDRB26InputLVCMOSDDRB27InputLVCMOSDDRB28InputLVCMOSDDRB29InputLVCMOSDDRB16InputLVCMOSDDR	NO. (UUT) KATE 00 LEKK 10 AG3 Input LVCMOS DDR Differentially terminated = 100 Ω AL9 Input LVCMOS DDR Differentially terminated = 100 Ω AD14 Input LVCMOS DDR Differentially terminated = 100 Ω AH16 Input LVCMOS DDR Differentially terminated = 100 Ω AF16 Input LVCMOS DDR Differentially terminated = 100 Ω AL15 Input LVCMOS DDR Differentially terminated = 100 Ω AE17 Input LVCMOS DDR Differentially terminated = 100 Ω B14 Input LVCMOS DDR Differentially terminated = 100 Ω A17 Input LVCMOS DDR Differentially terminated = 100 Ω B20 Input LVCMOS DDR Differentially terminated = 100 Ω G21 Input LVCMOS DDR Differentially terminated = 100 Ω G22 Input LVCMOS DDR Differentially terminated = 100 Ω	NO.(UOP)INALEOTHERM TOAG3InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAL9InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAD14InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAJ15InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CAE17InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CE15InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG21InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG21InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG23InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_C <td>NC.UOUPYICANRATE ofDifferentially Uterminated - 100 ΩDCLK_BAG3inputLVCMOSDDRDifferentially Uterminated - 100 ΩDCLK_BAL19inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAD14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH17inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB20inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF22InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDR<</td>	NC.UOUPYICANRATE ofDifferentially Uterminated - 100 ΩDCLK_BAG3inputLVCMOSDDRDifferentially Uterminated - 100 ΩDCLK_BAL19inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAD14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH16inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_BAH17inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB14inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CB20inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CG211inputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF20InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF22InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDRDifferentially terminated - 100 ΩDCLK_CF28InputLVCMOSDDR<				

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

www.ti.com.cn

NSTRUMENTS

Texas


Fin Functions (continued)										
NAME	PIN ⁽¹⁾ NO.	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE (MILS)		
D_CP(6)	D20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		195.09		
D_CP(7)	H22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		104.86		
D_CP(8)	B28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		451.41		
D_CP(9)	F26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Input data bus C (2x LVDS)	294.22		
D_CP(10)	C27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		429.68		
D_CP(11)	G29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		314.98		
D_CP(12)	D28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		276.04		
D_CP(13)	H26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	_	186.25		
D_CP(14)	E27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	_	312.07		
D_CP(15)	J27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C		262.94		
DATA BUS D										
D_DN(0)	AK14	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		492.53		
D_DN(1)	AG15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		342.78		
D_DN(2)	AL17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		491.83		
D_DN(3)	AE21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		74.24		
D_DN(4)	AK20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		356.23		
D_DN(5)	AF20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Input data bus D	163.07		
D_DN(6)	AH22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	(2x LVDS)	204.16		
D_DN(7)	AE23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		105.59		
D_DN(8)	AK26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	_	450.51		
D_DN(9)	AF28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		302.04		
D_DN(10)	AJ29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		429.8		
D_DN(11)	AE27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		298.87		

www.ti.com.cn	

Texas

INSTRUMENTS

Pin Functions (continued)										
PI	N ⁽¹⁾ NO.	TYPE (I/O/P)	SIGNAL	DATA RATE ⁽²⁾	INTERNAL TERM ⁽³⁾	CLOCK	DESCRIPTION	TRACE (MILS)		
D_DN(12)	AH26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		276.76		
D_DN(13)	AD28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		186.78		
D_DN(14)	AG29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	_	311.3		
D_DN(15)	AC29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		262.62		
D_DP(0)	AK16	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		495.13		
D_DP(1)	AG17	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		342.47		
D_DP(2)	AL15	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		492.06		
D_DP(3)	AD20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		67.72		
D_DP(4)	AK22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	_	356.37		
D_DP(5)	AF22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Input data bus D	161.98		
D_DP(6)	AH20	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	(2x LVDS)	195.09		
D_DP(7)	AD22	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		102.86		
D_DP(8)	AK28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		451.41		
D_DP(9)	AF26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		296.7		
D_DP(10)	AJ27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		429.68		
D_DP(11)	AE29	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		302.74		
D_DP(12)	AH28	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		276.04		
D_DP(13)	AD26	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		186.25		
D_DP(14)	AG27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		312.07		
D_DP(15)	AC27	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D		262.94		

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

www.ti.com.cn

Texas Instruments

PI	N ⁽¹⁾	TYPE		DATA	INTERNAL			TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
DATA CLOCKS								
DCLK_AN	D10	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus A	325.8
DCLK_AP	D8	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	319.9
DCLK_BN	AJ11	Input	LVCMOS	_	Differentially terminated – 100 Ω	—	Input data bus B	318.92
DCLK_BP	AJ9	Input	LVCMOS	_	Differentially terminated – 100 Ω	—	Clock (2x LVDS)	318.74
DCLK_CN	C23	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus C	252.01
DCLK_CP	C21	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	241.18
DCLK_DN	AJ23	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Input data bus D	252.01
DCLK_DP	AJ21	Input	LVCMOS	_	Differentially terminated – 100 Ω	_	Clock (2x LVDS)	241.18
DATA CONTROL I	NPUTS							
SCTRL_AN	J3	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	Serial control for	608.14
SCTRL_AP	J5	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_A	data bus A (2x LVDS)	607.45
SCTRL_BN	AF4	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	Serial control for	698.12
SCTRL_BP	AF2	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_B	data bus B (2x LVDS)	703.8
SCTRL_CN	E23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	Serial control for	232.46
SCTRL_CP	E21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_C	data bus C (2x LVDS)	235.21
SCTRL_DN	AG23	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	Serial control for	235.53
SCTRL_DP	AG21	Input	LVCMOS	DDR	Differentially terminated – 100 Ω	DCLK_D	data bus D (2x LVDS)	235.66
SERIAL COMMUN	ICATION AND CONI	IGURATION						
SCPCLK	AE1	Input	LVCMOS	_	pull-down	_	Serial port clock	324.26
SCPDO	AC3	Output	LVCMOS	_	—	SCP_CLK	Serial port output	281.38
SCPDI	AD2	Input	LVCMOS	_	pull-down	SCP_CLK	Serial port input	261.55
SCPEN	AD4	Input	LVCMOS	_	pull-down	SCP_CLK	Serial port enable	184.86
PWRDN	B4	Input	LVCMOS	_	pull-down	—	Device reset	458.78
MODE_A	J1	Input	LVCMOS	—	pull-down	_	Data bandwidth	471.57
MODE_B	G1	Input	LVCMOS	_	pull-down	_	mode select	521.99

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

PIN	(1)	ТҮРЕ		DATA	INTERNAL			TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
MICROMIRROR CLC		S RESET)						
MBRST(0)	L5	Input	Analog	_		_		898.97
MBRST(1)	M28	Input	Analog	_	_	_	-	621.98
MBRST(2)	P4	Input	Analog	_		_	-	846.88
MBRST(3)	P30	Input	Analog	_		_	-	784.18
MBRST(4)	L3	Input	Analog	_	_	_	-	763.34
MBRST(5)	P28	Input	Analog	_	_	_	-	749.61
MBRST(6)	P2	Input	Analog	_		_	-	878.25
MBRST(7)	T28	Input	Analog	_	_	_	-	783.83
MBRST(8)	M4	Input	Analog	_		_	-	969.36
MBRST(9)	L29	Input	Analog	_	_	_	-	621.24
MBRST(10)	T4	Input	Analog	_	_	_	-	918.43
MBRST(11)	N29	Input	Analog	_		_	-	685.14
MBRST(12)	N3	Input	Analog			_		812.31
MBRST(12)	L27	Input	Analog	_		_	Micromirror clocking pulse reset MBRST	591.89
MBRST(14)	R3	Input	Analog			_	signals clock	878.5
MBRST(15)	V28	Input	Analog			_	micromirrors into state of LVCMOS	660.15
MBRST(16)	V4	Input	Analog	_		_	memory cell	848.64
MBRST(17)	R29	Input	Analog	_			associated with each mirror.	796.31
MBRST(18)	Y4	Input	Analog				_	730.51
MBRST(19)	AA27	Input	Analog			_		604.35
MBRST(20)	W3							832.39
MBRST(20) MBRST(21)	W3 W27	Input	Analog				_	675.21
MBRST(22)	AA3	Input	Analog		—	_	_	861.18
MBRST(22) MBRST(23)	W29	Input	Analog			_	_	662.66
		Input	Analog		—	_	_	
MBRST(24)	U5	Input	Analog				_	850.06
MBRST(25)	U29	Input	Analog	_	_	_	-	726.56
MBRST(26)	Y2	Input	Analog	_		_	_	861.48
MBRST(27)	AA29	Input	Analog	_		_	-	683.83
MBRST(28)	U3	Input	Analog	-		_	_	878.5
MBRST(29)	Y30	Input	Analog	—	_	—		789.2
POWER	AO AE AZ AO			1				
	A3, A5, A7, A9, A11, A13, A21, A23, A25, A27, A29, B2, C1, C31, E31,							
VCC	G31, J31, K2, L31, N31, R31, U31, W31,	Power	Analog		_	_	Power for LVCMOS	_
	AA31, AC1, AC31, AE31, AG1, AG31, AJ31, AK2,	A31, AC1, [00gic C31, AE31, G1, AG31, [10gic]	logic	_				
	AK30, AL3, AL5, AL7, AL19, AL21, AL23, AL25, AL27							
VCCI	H6, H12, H18, H24, M6, M26, P6, P26, T6, T26, V6, V26,	Power	Analog	_	_	_	Power supply for LVDS Interface	_
	Y6, Y26, AD6, AD12, AD18, AD24		-					

PIN	j (1)	TYPE		DATA	INTERNAL	0.00%		TRACE
NAME	NO.	(I/O/P)	SIGNAL	RATE ⁽²⁾	TERM ⁽³⁾	CLOCK	DESCRIPTION	(MILS)
VCC2	L1, N1, R1, U1, W1, AA1	Power	Analog	_	_	_	Power for high voltage CMOS logic	_
	A1, B12, B18, B24, B30, C7, C13, C19, C25, D6, D12, D18, D24, D30, E1, E7, E13, E19, E25, F6, F12,							
	F18, F24, F30, G7, G13, G19, G25, K4, K6, K26, K28,							
VSS	K30, M2, M30, K30, M2, M30, N5, N27, R5, T2, T30, U27, V2, V30, W5, Y28, AB2, AB4,	Power	Analog	_	_	_	Common return for	_
	AB6, AB26, AB28, AB30, AD30, AE7, AE13, AE19,		7.114.09				all power inputs	
	AE25, AF6, AF12, AF18, AF24, AF30, AG7, AG13,							
	AG19, AG25, AH6, AH12, AH18, AH24, AH30, AJ1,							
	AJ7, AJ13, AJ19, AJ25, AK6, AK12, AK18, AL29							
RESERVED SIGNAL	LS (NOT FOR USE IN	SYSTEM)						
RESERVED_FC	J7	Input	LVCMOS	_	pull-down	—		_
RESERVED_FD	J9	Input	LVCMOS	_	pull-down	—	D . 1 1 . .	_
RESERVED_PFE	J11	Input	LVCMOS	-	pull-down	—	Pins should be connected to VSS	
RESERVED_STM	AC7	Input	LVCMOS	-	pull-down	—		
RESERVED_AE	C3	Input	LVCMOS	-	pull-down	—		_
NO_CONNECT	A19, B6, C5, H30, J13, J15, J17, J19, J21, J23, J25, R27, AA5, AC11,						No connection (any connection to these torminals may result	
	AC13, AC15, AC17, AC19, AC21, AC23,						terminals may result in undesirable effects)	_
	AC25, AC5, AC9, AK24, AK4, AL13							

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted). (1)

		MIN	MAX	UNIT
ELECTRICAL				
V _{CC}	Voltage applied to V _{CC} $^{(2)}$ $^{(3)}$	-0.5	4	V
V _{CCI}	Voltage applied to V _{CCI} $^{(2)}$ $^{(3)}$	-0.5	4	V
V _{CC2}	Voltage applied to V_{VCC2} ^{(2) (3) (4)}	-0.5	9	V
V _{MBRST}	Clocking pulse waveform voltage applied to MBRST[29:0] input pins (supplied by DLPA200s)	-28	28	V
V _{CC} – V _{CCI}	Supply voltage delta (absolute value) (4)		0.3	V
	Voltage applied to all other input terminals ⁽²⁾	-0.5	V _{CC} + 0.3	V
V _{ID}	Maximum differential voltage, damage can occur to internal termination resistor if exceeded, see Figure 2		700	mV
	Current required from a high-level output, $V_{OH} = 2.4 V$		-20	mA
	Current required from a low-level output, V _{OL} = 0.4 V		15	mA
ENVIRONMENT	AL			
-	Case temperature – operational ⁽⁵⁾	20	30	°C
T _C	Case temperature – non-operational ⁽⁵⁾	-40	80	°C
T _{GRADIENT}	Device temperature gradient – operational ⁽⁶⁾		10	°C
RH	Relative humidity (non-condensing)		95	%RH

(1) Stresses beyond those listed under Recommended Operating Conditions may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltages referenced to V_{SS} (ground).

(3) Voltages V_{CC} , V_{CCI} , and V_{CC2} are required for proper DMD operation.

(4) Exceeding the recommended allowable absolute voltage difference between V_{CC} and V_{CCI} may result in excess current draw. The difference between V_{CC} and V_{CCI} , $|V_{CC} - V_{CCI}|$, should be less than the specified limit.

(5) DMD Temperature is the worst-case of any test point shown in *Case Temperature*, or the active array as calculated by the *Micromirror Array Temperature Calculation*.

(6) As either measured, predicted, or both between any two points - measured on the exterior of the package, or as predicted at any point inside the micromirror array cavity. Refer to Case Temperature and Micromirror Array Temperature Calculation.

7.2 Storage Conditions

applicable before the DMD is installed in the final product

		MIN	MAX	UNIT
T _{DMD}	Storage temperature	-40	80	°C
RH	Storage humidity (non-condensing)		95	%RH

7.3 ESD Ratings

				VALUE	UNIT
V _{ESD}	Electrostatic	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	All pins except MBRST[29:0]	±2000	V
200	discharge		MBRST[29:0] pins	±250	

 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible if necessary precautions are taken. ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

7.4 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted). ⁽¹⁾

			MIN	NOM	MAX	UNIT
ELECTRICAL						
V _{cc}	LVCMOS interface supply voltage (2) (3)		3	3.3	3.6	V
V _{CCI}	LVCMOS logic supply voltage (2) (3)		3	3.3	3.6	V
V _{CC2}	Mirror electrode and HVCMOS supply voltage (2) (3)	1	8.25	8.5	8.75	V
V _{MBRST}	Clocking pulse waveform voltage applied to MBRST	[29:0] input pins (supplied by DLPA200s)	-27		26.5	V
MECHANICAL						
	Static load applied to electrical interface area, see	⁴⁾ Figure 5			1334	Ν
	Static load applied to the thermal interface area, see	e ⁽⁵⁾ Figure 5			156	Ν
	Static load applied to Datum 'A' interface area Figur	re 5			712	Ν
ENVIRONMENTA	L ⁽⁶⁾					
		< 363 nm ⁽⁸⁾			2	mW/cm ²
		(9)	3 3.3 3.6 8.25 8.5 8.75 -27 26.5 1334 156 712 712 2 rr 2 2 2 712 2 rr 2 2.5 2 6 11 14 26.6 11 20 30 ⁽¹³⁾ 10 10	2.5	W/cm ²	
		363 to 400 nm ⁽⁹⁾		W		
				W/cm ²		
	Illumination power density ⁽⁷⁾	400 to 420 nm ⁽⁹⁾			26.6	W
					11	W/cm ²
		363 to 420 nm total ⁽⁹⁾ (10)			26.6	W
		> 420 nm	Т	hermally li	mited (9)	W/cm ²
T _C	Case/Array Temperature (11) (12)	1	20		30 ⁽¹³⁾	°C
T _{GRADIENT}	Device temperature gradient (14)				10	°C
RH	Relative humidity (non-condensing) (15)				95	%RH
	Operating landed duty cycle ⁽¹⁶⁾			25%		

(1) The functional performance of the device specified in this data sheet is achieved when operating the device within the limits defined by the Recommended Operating Conditions. No level of performance is implied when operating the device above or below the Recommended Operating Conditions limits.

All voltages referenced to V_{SS} (ground).

(3)Voltages V_{CC}, V_{CC2}, and V_{CC1}, are required for proper DMD operation. V_{SS} must also be connected.

- Load should be uniformly distributed across the entire electrical interface area. (4)
- Load should be uniformly distributed across thermal interface area. Refer to Figure 5. (5)
- Optimal, long-term performance and optical efficiency of the Digital Micromirror Device (DMD) can be affected by various application (6) parameters, including illumination spectrum, illumination power density, micromirror landed duty-cycle, ambient temperature (storage and operating), DMD temperature, ambient humidity (storage and operating), and power on or off duty cycle. TI recommends that application-specific effects be considered as early as possible in the design cycle.

Total integrated illumination power density, above or below the indicated wavelength threshold or in the indicated wavelength range.

The maximum operating conditions for operating temperature and illumination power density for wavelengths < 363nm should not be (8) implemented simultaneously.

Also limited by the resulting micromirror array temperature. Refer to Case Temperature and Micromirror Array Temperature Calculation for information related to calculating the micromirror array temperature.

- (10) The total integrated illumination power density from 363 to 420 nm shall not exceed 11 W/cm² (or 26.6 W evenly distributed on the active array area). Therefore if 2.5 W/cm² of illumination is used in the 363 to 400 nm range, then illumination in the 400 to 420 nm range must be limited to 8.5 W/cm².
- (11) In some applications, the total DMD heat load can be dominated by the amount of incident light energy absorbed. See Micromirror Array Temperature Calculation for further details.
- (12) Temperature is the highest measured value of any test point shown in Figure 17 or the active array as calculated by the Micromirror Array Temperature Calculation.

(13) See the Micromirror Array Temperature Calculation for thermal test point locations, package thermal resistance, and device temperature calculation.

- (14) As either measured, predicted, or both between any two points measured on the exterior of the package, or as predicted at any point inside the micromirror array cavity. Refer to Case Temperature and Micromirror Array Temperature Calculation.
- (15) Various application parameters can affect optimal, long-term performance of the DMD, including illumination spectrum, illumination power density, micromirror landed duty cycle, ambient temperature (both storage and operating), case temperature, and power-on or power-off duty cycle. TI recommends that application-specific effects be considered as early as possible in the design cycle. Contact your local TI representative for additional information related to optimizing the DMD performance.
- (16) Landed duty cycle refers to the percentage of time an individual micromirror spends landed in one state (12° or -12°) versus the other state (-12° or 12°).

www.ti.com.cn

7.5 Thermal Information

	DLP9500UV	
THERMAL METRIC ⁽¹⁾ ⁽²⁾	FLN (LCCC)	UNIT
	355 PINS	
Active micromirror array resistance to TP1	0.5	°C/W

(1) The DMD is designed to conduct absorbed and dissipated heat to the back of the package where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the package within the temperature range specified in the *Recommended Operating Conditions*. The total heat load on the DMD is largely driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array. Optical systems should be designed to minimize the light energy falling outside the window clear aperture since any additional thermal load in this area can significantly degrade the reliability of the device.

7.6 Electrical Characteristics

over the range of recommended supply voltage and recommended case operating temperature (unless otherwise noted); under recommended operating conditions

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH}	High-level output voltage ⁽¹⁾ , See Figure 10	$V_{CC} = 3 \text{ V}, \text{ I}_{OH} = -20 \text{ mA}$	2.4			V
V _{OL}	Low-level output voltage ⁽¹⁾ , See Figure 10	$V_{CC} = 3.6 \text{ V}, \text{ I}_{OH} = 15 \text{ mA}$			0.4	V
V _{MBRST}	Clocking pulse waveform applied to MBRST[29:0] input pins (supplied by DLPA200s)		-27		26.5	V
I _{OZ}	High-impedance output current ⁽¹⁾	V _{CC} = 3.6 V			10	μA
	Ulate land and an entry (1)	$V_{OH} = 2.4 \text{ V}, V_{CC} \ge 3 \text{ V}$			-20	
I _{OH}	High-level output current ⁽¹⁾	V _{OH} = 1.7 V, V _{CC} ≥ 2.25 V			-15	mA
I _{OL}	Level autout autout (1)	$V_{OL} = 0.4 \text{ V}, V_{CC} \ge 3 \text{ V}$			15	
	Low-level output current ⁽¹⁾	V _{OL} = 0.4 V, V _{CC} ≥ 2.25 V			14	mA
VIH	High-level input voltage ⁽¹⁾		1.7		V _{CC} + 0.3	V
V _{IL}	Low-level input voltage ⁽¹⁾		-0.3		0.7	V
IIL	Low-level input current ⁽¹⁾	V _{CC} = 3.6 V, V _I = 0 V			-60	μA
I _{IH}	High-level input current (1)	$V_{CC} = 3.6 V, V_{I} = V_{CC}$			60	μA
I _{CC}	Current into V _{CC} pin	V _{CC} = 3.6 V,			2990	mA
I _{CCI}	Current into V _{OFFSET} pin ⁽²⁾	V _{CCI} = 3.6 V			910	mA
I _{CC2}	Current into V _{CC2} pin	V _{CC2} = 8.75 V			25	mA
PD	Power dissipation			4.4		W
Z _{IN}	Internal differential impedance		95		105	Ω
Z _{LINE}	Line differential impedance (PWB, trace)		90	100	110	Ω
CI	Input capacitance (1)	f = 1 MHz			10	pF
Co	Output capacitance ⁽¹⁾	f = 1 MHz			10	pF
CIM	Input capacitance for MBRST[29:0] pins	f = 1 MHz	270		355	pF

(1) Applies to LVCMOS pins only.

(2) Exceeding the maximum allowable absolute voltage difference between V_{CC} and V_{CCI} may result in excess current draw (See Absolute Maximum Ratings for details).

⁽²⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

DLP9500UV

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

www.ti.com.cn

7.7 LVDS Timing Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 1

		MIN	NOM	MAX	UNIT
f_{DCLK_x}	DCLK_x clock frequency (where $x = [A, B, C, or D]$)	200		400	MHz
t _c	Clock cycle - DLCK_x	2.5			ns
t _w	Pulse duration - DLCK_x		1.25		ns
t _s	Setup time - D_x[15:0] and SCTRL_x before DCLK_x	0.35			ns
t _h	Hold time, D_x[15:0] and SCTRL_x after DCLK_x	0.35			ns
t _{skew}	Skew between any two buses (A ,B, C, and D)	-1.25		1.25	ns

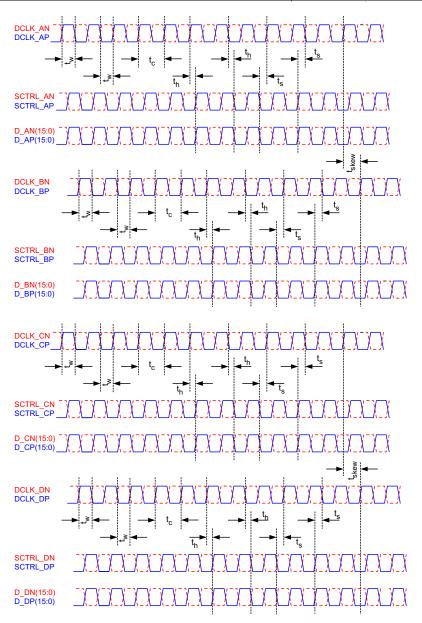


Figure 1. LVDS Timing Waveforms

7.8 LVDS Waveform Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 2

		MIN	NOM	MAX	UNIT
V _{ID}	Input differential voltage (absolute difference)	100	400	600	mV
V _{CM}	Common mode voltage		1200		mV
V _{LVDS}	LVDS voltage	0		2000	mV
t _r	Rise time (20% to 80%)	100		400	ps
t _r	Fall time (80% to 20%)	100		400	ps

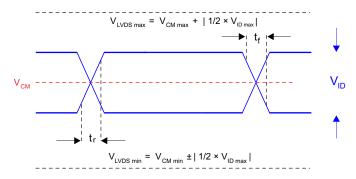
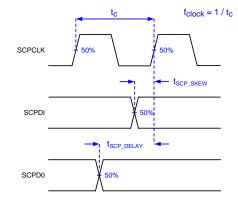


Figure 2. LVDS Waveform Requirements

DLP9500UV


ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

www.ti.com.cn

7.9 Serial Control Bus Timing Requirements

over operating free-air temperature range (unless otherwise noted); see Figure 3 and Figure 4

		MIN	NOM	MAX	UNIT
f_{SCP_CLK}	SCP clock frequency	50		500	kHz
t _{SCP_SKEW}	Time between valid SCP_DI and rising edge of SCP_CLK	-300		300	ns
t _{SCP_DELAY}	Time between valid SCP_DO and rising edge of SCP_CLK			960	ns
t SCP_EN	Time between falling edge of SCP_EN and the first rising edge of SCP_CLK	30			ns
t_SCP	Rise time for SCP signals			200	ns
t _{f_SCP}	Fall time for SCP signals			200	ns

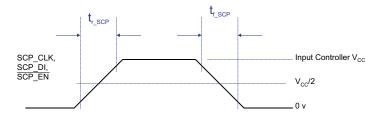


Figure 4. Serial Communications Bus Waveform Requirements

7.10 Systems Mounting Interface Loads

PARAMETER			NOM	MAX	UNIT
	Thermal interface area (see Figure 5)			156	Ν
Maximum system mounting interface load to be applied to the:	Electrical interface area (see Figure 5)			1334	Ν
	Datum A Interface area (see Figure 5)			712	Ν

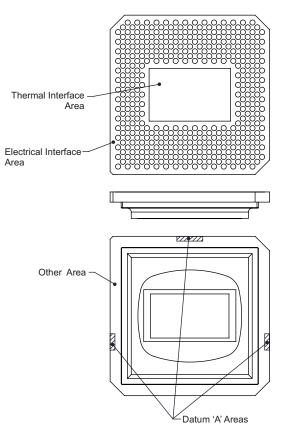
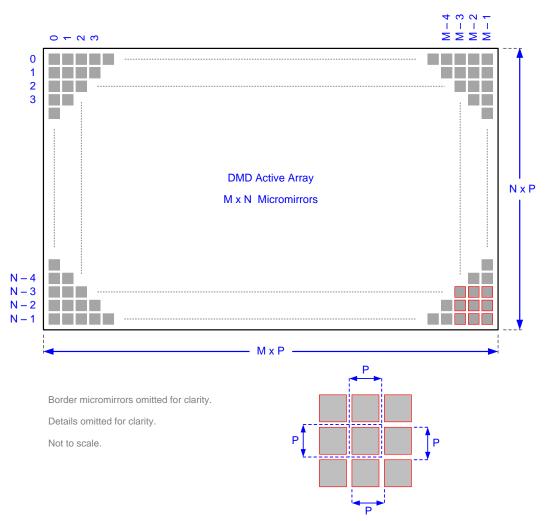


Figure 5. System Interface Loads

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017


www.ti.com.cn

7.11 Micromirror Array Physical Characteristics

See 机械、封装和可订购信息 for additional details.

			VALUE	UNIT
М	M Number of active micromirror columns ⁽¹⁾		1920	micromirrors
Ν	N Number of active micromirror rows ⁽¹⁾		1080	micromirrors
Р	P Micromirror (pixel) pitch ⁽¹⁾		10.8	μm
	Micromirror active array width (1)	M × P	20.736	mm
	Micromirror active array height (1)	N × P	11.664	mm
	Micromirror array border (1) (2)	Pond of micromirrors (POM)	10	micromirrors/side

 See Figure 6.
 The structure and qualities of the border around the active array includes a band of partially functional micromirrors called the POM. These micromirrors are structurally and/or electrically prevented from tilting toward the bright or ON state, but still require an electrical bias to tilt toward OFF.

Refer to the Micromirror Array Physical Characteristics table for M, N, and P specifications.

Figure 6. Micromirror Array Physical Characteristics

7.12 Micromirror Array Optical Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Micromirror tilt angle	DMD parked state ^{(1) (2) (3)} , See Figure 12		0		degrees	
a Micror		DMD landed state ^{(1) (4) (5)} See Figure 12		12			
β	Micromirror tilt angle variation (1) (4) (6) (7) (8)	See Figure 12	-1		1	degrees	
	Micromirror crossover time ⁽⁹⁾			3		μs	
	Micromirror switching time ⁽¹⁰⁾			13	22	μs	
	Array switching time at 400 MHz with global reset ⁽¹¹⁾		56			μs	
	Non-operating micromirrors ⁽¹²⁾	Non-adjacent micromirrors			10	miaramirrara	
	Non-operating microminors (1-)	Adjacent micromirrors			0	micromirrors	
	Orientation of the micromirror axis-of-rotation ⁽¹³⁾	See Figure 12	44	45	46	degrees	
	Micromirror array optical efficiency (14) (15)	363 to 420 nm, with all micromirrors in the ON state		68%			

(1) Measured relative to the plane formed by the overall micromirror array.

(2) Parking the micromirror array returns all of the micromirrors to an essentially flat (0°) state (as measured relative to the plane formed by the overall micromirror array).

(3) When the micromirror array is parked, the tilt angle of each individual micromirror is uncontrolled.

- (4) Additional variation exists between the micromirror array and the package datums, as shown in 机械、封装和可订购信息.
- (5) When the micromirror array is landed, the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in an nominal angular position of +12°. A binary value of 0 results in a micromirror landing in an nominal angular position of -12°.
- (6) Represents the landed tilt angle variation relative to the nominal landed tilt angle.
- (7) Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
- (8) For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations and/or system contrast variation.
- (9) Micromirror crossover time is the transition time from landed to landed during a crossover transition and primarily a function of the natural response time of the micromirrors.
- (10) Micromirror switching time is the time after a micromirror clocking pulse until the micromirrors can be addressed again. It included the micromirror settling time.
- (11) Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal switching time depends on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and mirror settling time).
- (12) Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the -12° position to +12° or vice versa.
- (13) Measured relative to the package datums 'B' and 'C', shown in the 机械、封装和可订购信息.
- (14) The minimum or maximum DMD optical efficiency observed in a specific application depends on numerous application-specific design variables, such as:
 - (a) Illumination wavelength, bandwidth/line-width, degree of coherence
 - (b) Illumination angle, plus angle tolerance
 - (c) Illumination and projection aperture size, and location in the system optical path
 - (d) Illumination overfill of the DMD micromirror array
 - (e) Aberrations present in the illumination source and/or path
 - (f) Aberrations present in the projection path

The specified nominal DMD optical efficiency is based on the following use conditions:

- (a) UV illumination (363 to 420 nm)
- (b) Input illumination optical axis oriented at 24° relative to the window normal
- (c) Projection optical axis oriented at 0° relative to the window normal
- (d) f / 3.0 illumination aperture
- (e) f / 2.4 projection aperture

Based on these use conditions, the nominal DMD optical efficiency results from the following four components:

- (a) Micromirror array fill factor: nominally 92%
- (b) Micromirror array diffraction efficiency: nominally 85%
- (c) Micromirror surface reflectivity: nominally 88%
- (d) Window transmission: nominally 98% (single pass, through two surface transitions)
- (15) Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.

Micromirror Array Optical Characteristics (continued)

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. See the related application reports (listed in $\underline{H} \neq \underline{\chi} \underline{H}$) for guidelines.

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Window material		Cornii	ng 7056		
Window artifact size	Within the window aperture (16)			400	μm
Window aperture		ŝ	See ⁽¹⁷⁾		

(16) Refers only to non-cleanable artifacts. See the DMD S4xx Glass Cleaning Procedure (DLPA025) and DMD S4xx Handling Specifications (DLPA014) for recommended handling and cleaning processes.

(17) See 机械、封装和可订购信息 for details regarding the size and location of the window aperture.

7.13 Chipset Component Usage Specification

The DLP9500UV is a component of one or more DLP chipsets. Reliable function and operation of the DLP9500UV requires that it be used in conjunction with the other components of the applicable DLP chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP DMD.

8 Detailed Description

8.1 Overview

Optically, the DLP9500UV consists of 2,073,600 highly reflective, digitally switchable, micrometer-sized mirrors (micromirrors), organized in a two-dimensional array of 1920 micromirror columns by 1080 micromirror rows. Each aluminum micromirror is approximately 10.8 microns in size (see the *Micromirror Pitch* in Figure 11) and is switchable between two discrete angular positions: -12° and 12°. The angular positions are measured relative to a 0° flat state, which is parallel to the array plane (see Figure 12). The tilt direction is perpendicular to the hinge-axis, which is positioned diagonally relative to the overall array. The On State landed position is directed toward row 0, column 0 (upper left) corner of the device package (see the *Micromirror Hinge-Axis Orientation* in Figure 11). In the field of visual displays, the 1920 × 1080 pixel resolution is referred to as 1080p.

Each individual micromirror is positioned over a corresponding CMOS memory cell. The angular position of a specific micromirror is determined by the binary state (logic 0 or 1) of the corresponding CMOS memory cell contents, after the mirror clocking pulse is applied. The angular position $(-12^{\circ} \text{ or } +12^{\circ})$ of the individual micromirrors changes synchronously with a micromirror clocking pulse, rather than being synchronous with the CMOS memory cell data update. Therefore, writing a logic 1 into a memory cell followed by a mirror clocking pulse will result in the corresponding micromirror switching to a 12° position. Writing a logic 0 into a memory cell followed by a mirror clocking pulse will result in the corresponding micromirror switching to a -12° position.

Updating the angular position of the micromirror array consists of two steps. First, updating the contents of the CMOS memory. Second, application of a micromirror clocking pulse to all or a portion of the micromirror array (depending upon the configuration of the system). Micromirror clocking pulses are generated externally by two DLPA200s, with application of the pulses being coordinated by the DLPC410 controller.

Around the perimeter of the 1920 by 1080 array of micromirrors is a uniform band of border micromirrors. The border micromirrors are not user-addressable. The border micromirrors land in the -12° position once power has been applied to the device. There are 10 border micromirrors on each side of the 1920 by 1080 active array.

Figure 7 shows a DLPC410 and DLP9500UV chipset block diagram. The DLPC410 and DLPA200s control and coordinate the data loading and micromirror switching for reliable DLP9500UV operation. The DLPR410 is the programmed PROM required to properly configure the DLPC410 controller. For more information on the chipset components, see *Application and Implementation*. For a typical system application using the DLP Discovery 4100 chipset including a DLP9500UV, see Figure 19.

8.2 Functional Block Diagram

Figure 7 shows a simplified system block diagram with the use of the DLPC410 with the following chipset components:

- **DLPC410** Xilinx [XC5VLX30] FPGA configured to provide high-speed DMD data and control, and DLPA200 timing and control
- **DLPR410** [XCF16PFSG48C] serial flash PROM contains startup configuration information (EEPROM)
- DLPA200 Two DMD micromirror drivers for the DLP9500UV DMD
- **DLP9500UV** Spatial light modulator (DMD)

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

www.ti.com.cn

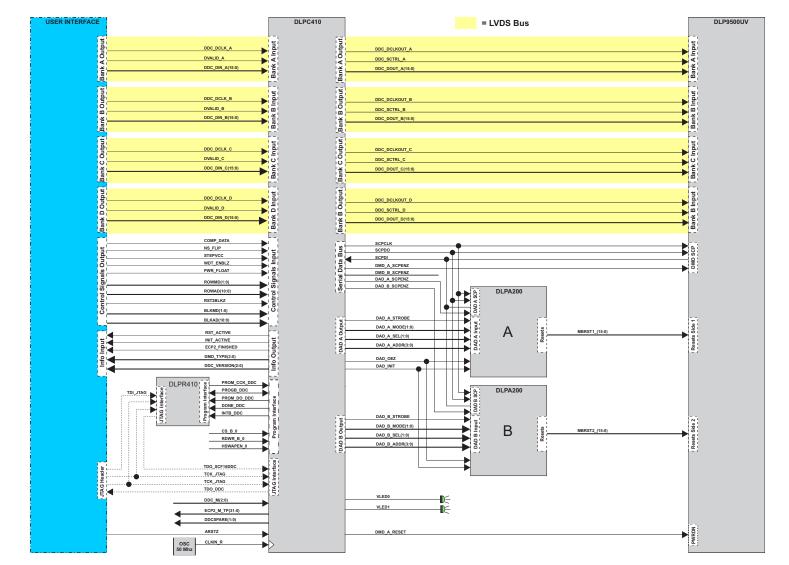


Figure 7. DLPC410, DLPA200, DLPR410, and DLP9500UV Functional Block Diagram

8.3 Feature Description

DMD	ARRAY	SINGLE BLOCK MODE (Patterns/s)	GLOBAL RESET MODE (Patterns/s)	DATA RATE (Giga Pixels/s)	MIRROR PITCH
DLP9500UV - 0.95" 1080p	1920 × 1080	23148 ⁽¹⁾	17857	48	10.8 μm

Table 1. DMD Overview

(1) This is for single block mode resets.

8.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset

The DLPC410 chipset includes the DLPC410 controller which provides a high-speed LVDS data and control interface for DMD control. This interface is also connected to a second FPGA used to drive applications (not included in the chipset). The DLPC410 generates DMD and DLPA200 initialization and control signals in response to the inputs on the control interface.

For more information, see the DLPC410 data sheet (DLPS024).

8.3.2 DLPA200 - DMD Micromirror Drivers

DLPA200 micromirror drivers provide the micromirror clocking pulse driver functions for the DMD. Two drivers are required for DLP9500UV.

The DLPA200 is designed to work with multiple DLP chipsets. Although the DLPA200 contains 16 MBSRT output pins, only 15 lines are used with the DLP9500 chipset. For more information see and the DLPA200 data sheet (DLPS015).

8.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset

The DLPC410 controller is configured at startup from the DLPR410 PROM. The contents of this PROM can not be altered. For more information, see the DLPR410 data sheet (DLPS027) the DLPC410 data sheet (DLPS024).

8.3.4 DLP9500 - DLP 0.95 1080p 2xLVDS UV Type-A DMD 1080p DMD

8.3.4.1 DLP9500UV 1080p Chipset Interfaces

This section will describe the interface between the different components included in the chipset. For more information on component interfacing, see *Application and Implementation*.

8.3.4.1.1 DLPC410 Interface Description

8.3.4.1.1.1 DLPC410 IO

Table 2 describes the inputs and outputs of the DLPC410 to the user. For more details on these signals, see the DLPC410 data sheet (DLPS024).

NSTRUMENTS

FXAS

Table 2. Input/Output Description

PIN NAME	DESCRIPTION	I/O
ARST	Asynchronous active low reset	I
CLKIN_R	Reference clock, 50 MHz	I
DIN_[A,B,C,D](15:0)	LVDS DDR input for data bus A,B,C,D (15:0)	I
DCLKIN[A,B,C,D]	LVDS inputs for data clock (200 - 400 MHz) on bus A, B, C, and D	I
DVALID[A,B,C,D]	LVDS input used to start write sequence for bus A, B, C, and D	I
ROWMD(1:0)	DMD row address and row counter control	I
ROWAD(10:0)	DMD row address pointer	l
BLK_AD(3:0)	DMD mirror block address pointer	l
BLK_MD(1:0)	DMD mirror block reset and clear command modes	I
PWR_FLOAT	Used to float DMD mirrors before complete loss of power	I
DMD_TYPE(3:0)	DMD type in use	0
RST_ACTIVE	Indicates DMD mirror reset in progress	0
INIT_ACTIVE	Initialization in progress.	0
VLED0	System "heartbeat" signal	0
VLED1	Denotes initialization complete	0

8.3.4.1.1.2 Initialization

The *INIT_ACTIVE* (Table 2) signal indicates that the DLP9500UV, DLPA200s, and DLPC410 are in an initialization state after power is applied. During this initialization period, the DLPC410 is initializing the DLP9500UV and DLPA200s by setting all internal registers to their correct states. When this signal goes low, the system has completed initialization. System initialization takes approximately 220 ms to complete. Data and command write cycles should not be asserted during the initialization.

During initialization the user must send a training pattern to the DLPC410 on all data and DVALID lines to correctly align the data inputs to the data clock. For more information, see the interface training pattern information in the DLPC410 data sheet.

8.3.4.1.1.3 DMD Device Detection

The DLPC410 automatically detects the DMD type and device ID. DMD_TYPE (Table 2) is an output from the DLPC410 that contains the DMD information.

8.3.4.1.1.4 Power Down

To ensure long term reliability of the DLP9500UV, a shutdown procedure must be executed. Prior to power removal, assert the PWR_FLOAT (Table 2) signal and allow approximately 300 μ s for the procedure to complete. This procedure assures the mirrors are in a flat state.

8.3.4.1.2 DLPC410 to DMD Interface

8.3.4.1.2.1 DLPC410 to DMD IO Description

Table 3 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

	•	
PIN NAME	DESCRIPTION	I/O
DDC_DOUT_[A,B,C,D](15:0)	LVDS DDR output to DMD data bus A,B,C,D (15:0)	0
DDC_DCLKOUT_[A,B,C,D]	LVDS output to DMD data clock A,B,C,D	0
DDC_SCTRL_[A,B,C,D]	LVDS DDR output to DMD data control A,B,C,D	0

Table 3. DLPC410 to DMD I/O Pin Descriptions

8.3.4.1.2.2 Data Flow

Figure 8 shows the data traffic through the DLPC410. Special considerations are necessary when laying out the DLPC410 to allow best signal flow.

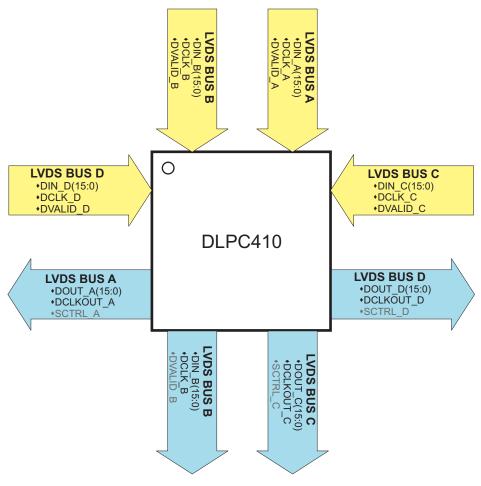


Figure 8. DLPC410 Data Flow

Four LVDS buses transfer the data from the user to the DLPC410. Each bus has its data clock that is input edge aligned with the data (DCLK). Each bus also has its own validation signal that qualifies the data input to the DLPC410 (DVALID).

Output LVDS buses transfer data from the DLPC410 to the DMD. Output buses LVDS C and LVDS D are used in addition to LVDS A and LVDS B with the DLP9500UV.

8.3.4.1.3 DLPC410 to DLPA200 Interface

8.3.4.1.3.1 DLPA200 Operation

The DLPA200 DMD micromirror driver is a mixed-signal application-specific integrated circuit (ASIC) that combines the necessary high-voltage power supply generation and micromirror clocking pulse functions for a family of DMDs. The DLPA200 is programmable and controllable to meet all current and anticipated DMD requirements.

The DLPA200 operates from a 12-V power supply input. For more detailed information on the DLPA200, see the DLPA200 data sheet.

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

www.ti.com.cn

8.3.4.1.3.2 DLPC410 to DLPA200 IO Description

The serial communications port (SCP) is a full duplex, synchronous, character-oriented (byte) port that allows exchange of commands from the DLPC410 to the DLPA200s.

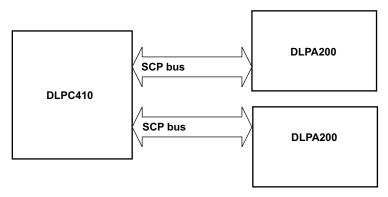


Figure 9. Serial Port System Configuration

Five signal lines are associated with the SCP bus: SCPEN, SCPCK, SCPDI, SCPDO, and IRQ.

Table 4 lists the available controls and status pin names and their corresponding signal type, along with a brief functional description.

PIN NAME	DESCRIPTION	I/O
A_SCPEN	Active-low chip select for DLPA200 serial bus	0
A_STROBE	DLPA200 control signal strobe	0
A_MODE(1:0)	DLPA200 mode control	0
A_SEL(1:0)	DLPA200 select control	0
A_ADDR(3:0)	DLPA200 address control	0
B_SCPEN	Active-low chip select for DLPA200 serial bus (2)	0
B_STROBE	DLPA200 control signal strobe (2)	0
B_MODE(1:0)	DLPA200 mode control	0
B_SEL(1:0)	DLPA200 select control	0
B_ADDR(3:0)	DLPA200 address control	0

Table 4. DLPC410 to DLPA200 I/O Pin Descriptions

The DLPA200 provides a variety of output options to the DMD by selecting logic control inputs: MODE[1:0], SEL[1:0] and reset group address A[3:0] (Table 4). The MODE[1:0] input determines whether a single output, two outputs, four outputs, or all outputs, will be selected. Output levels (VBIAS, VOFFSET, or VRESET) are selected by SEL[1:0] pins. Selected outputs are tri-stated on the rising edge of the STROBE signal and latched to the selected voltage level after a break-before-make delay. Outputs will remain latched at the last micromirror clocking pulse waveform level until the next micromirror clocking pulse waveform cycle.

8.3.4.1.4 DLPA200 to DLP9500UV Interface

8.3.4.1.4.1 DLPA200 to DLP9500UV Interface Overview

The DLPA200 generates three voltages: VBIAS, VRESET, and VOFFSET that are supplied to the DMD MBRST lines in various sequences through the micromirror clocking pulse driver function. VOFFSET is also supplied directly to the DMD as DMDVCC2. A fourth DMD power supply, DMDVCC, is supplied directly to the DMD by regulators.

The function of the micromirror clocking pulse driver is to switch selected outputs in patterns between the three voltage levels (VBIAS, VRESET and VOFFSET) to generate one of several micromirror clocking pulse waveforms. The order of these micromirror clocking pulse waveform events is controlled externally by the logic control inputs and timed by the STROBE signal. DLPC410 automatically detects the DMD type and then uses the DMD type to determine the appropriate micromirror clocking pulse waveform.

A direct micromirror clocking pulse operation causes a mirror to transition directly from one latched state to the next. The address must already be set up on the mirror electrodes when the micromirror clocking pulse is initiated. Where the desired mirror display period does not allow for time to set up the address, a micromirror clocking pulse with release can be performed. This operation allows the mirror to go to a relaxed state regardless of the address while a new address is set up, after which the mirror can be driven to a new latched state.

A mirror in the relaxed state typically reflects light into a system collection aperture and can be thought of as off although the light is likely to be more than a mirror latched in the *off* state. System designers should carefully evaluate the impact of relaxed mirror conditions on optical performance.

8.3.5 Measurement Conditions

The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. Figure 10 shows an equivalent test load circuit for the output under test. The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. All rise and fall transition timing parameters are referenced to V_{IL} MAX and V_{IH} MIN for input clocks, V_{OL} MAX and V_{OH} MIN for output clocks.

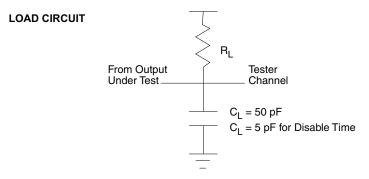


Figure 10. Test Load Circuit for AC Timing Measurements

DLP9500UV

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

www.ti.com.cn

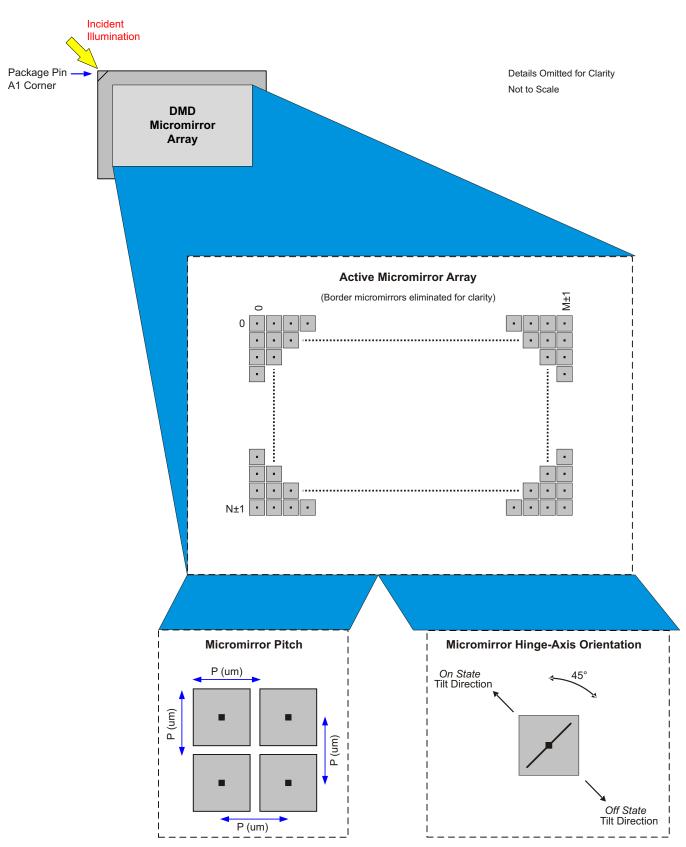


Figure 11. DMD Micromirror Array, Pitch, and Hinge-Axis Orientation

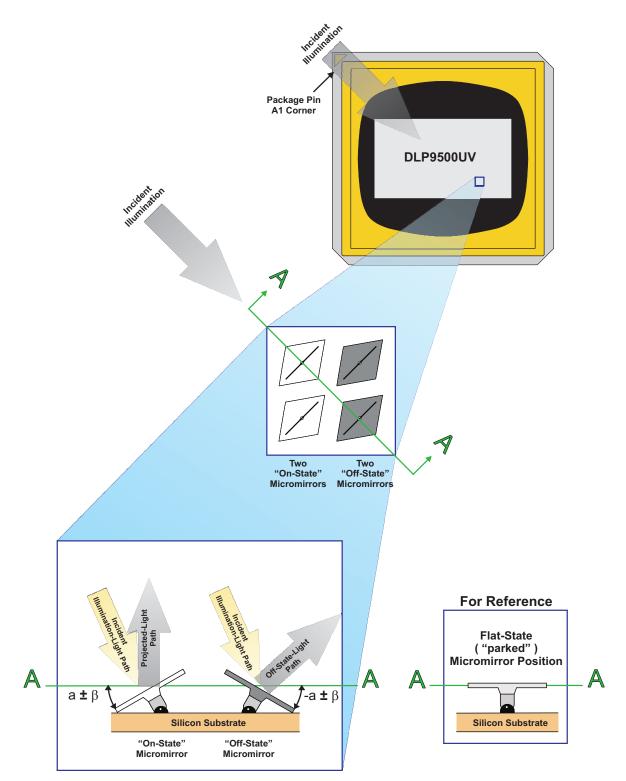


Figure 12. Micromirror Landed Positions and Light Paths

8.4 Device Functional Modes

The DLP9500UV has only one functional mode; it is set to be highly optimized for low latency and high speed in generating mirror clocking pulses and timings.

When operated with the DLPC410 controller in conjunction with the DLPA200 drivers, the DLP9500UV can be operated in several display modes. The DLP9500UV is loaded as 15 blocks of 72 rows each. The first 64 bits of pixel data and last 64 bits of pixel data for all rows are not visible. Below is a representation of how the image is loaded by the different micromirror clocking pulse modes. Figure 13, Figure 14, Figure 15, and Figure 16 show how the image is loaded by the different micromirror clocking pulse modes.

There are four micromirror clocking pulse modes that determine which blocks are *reset* when a micromirror clocking pulse command is issued:

- Single block mode
- Dual block mode
- Quad block mode
- Global mode

8.4.1 Single Block Mode

In single block mode, a single block can be loaded and reset in any order. After a block is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

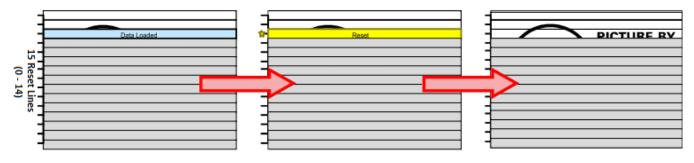


Figure 13. Single Block Mode

8.4.2 Dual Block Mode

In dual block mode, reset blocks are paired together as follows (0-1), (2-3), (4-5), (6-7), (8-9), (10-11), (12-13), and (14). These pairs can be reset in any order. After data is loaded a pair can be reset to transfer the information to the mechanical state of the mirrors.

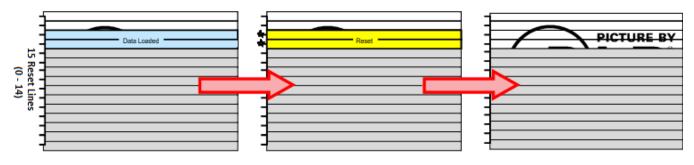


Figure 14. Dual Block Mode

Device Functional Modes (continued)

8.4.3 Quad Block Mode

In quad block mode, reset blocks are grouped together in fours as follows (0-3), (4-7), (8-11) and (12-14). Each quad group can be randomly addressed and reset. After a quad group is loaded, it can be reset to transfer the information to the mechanical state of the mirrors.

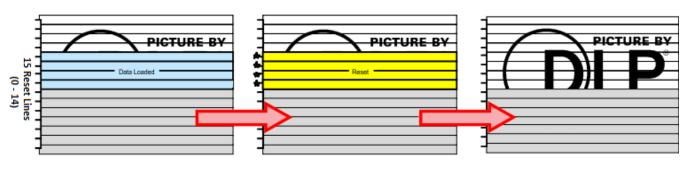


Figure 15. Quad Block Mode

8.4.4 Global Block Mode

In global mode, all reset blocks are grouped into a single group and reset together. The entire DMD must be loaded with the desired data before issuing a Global Reset to transfer the information to the mechanical state of the mirrors.

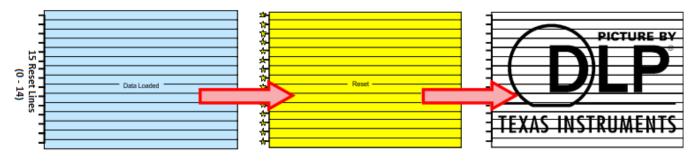


Figure 16. Global Mode

8.5 Window Characteristics and Optics

NOTE

TI assumes no responsibility for image quality artifacts or DMD failures caused by optical system operating conditions exceeding limits described previously.

8.5.1 Optical Interface and System Image Quality

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters. Optimizing system optical performance and image quality strongly relate to optical system design parameter trades. Although it is not possible to anticipate every conceivable application, projector image quality and optical performance is contingent on compliance to the optical system operating conditions described in the following sections.

8.5.2 Numerical Aperture and Stray Light Control

The angle defined by the numerical aperture of the illumination and projection optics at the DMD optical area should be the same. This angle should not exceed the nominal device mirror tilt angle unless appropriate apertures are added in the illumination, projection pupils, or both to block out flat-state and stray light from the projection lens. The mirror tilt angle defines DMD capability to separate the *ON* optical path from any other light path, including undesirable flat-state specular reflections from the DMD window, DMD border structures, or other system surfaces near the DMD such as prism or lens surfaces. If the numerical aperture exceeds the mirror tilt angle, or if the projection numerical aperture angle is more than two degrees larger than the illumination numerical aperture angle, objectionable artifacts in the display's border and/or active area could occur.

8.5.3 Pupil Match

TI recommends the exit pupil of the illumination is nominally centered within 2° (two degrees) of the entrance pupil of the projection optics. Misalignment of pupils can create objectionable artifacts in the display's border and/or active area, which may require additional system apertures to control, especially if the numerical aperture of the system exceeds the pixel tilt angle.

8.5.4 Illumination Overfill

The active area of the device is surrounded by an aperture on the inside DMD window surface that masks structures of the DMD device assembly from normal view. The aperture is sized to anticipate several optical operating conditions. Overfill light illuminating the window aperture can create artifacts from the edge of the window aperture opening and other surface anomalies that may be visible on the screen. The illumination optical system should be designed to limit light flux incident anywhere on the window aperture from exceeding approximately 10% of the average flux level in the active area. Depending on the optical architecture of a particular system, overfill light may have to be further reduced below the suggested 10% level to be acceptable.

Texas Instruments

www.ti.com.cn

8.6 Micromirror Array Temperature Calculation

Achieving optimal DMD performance requires proper management of the maximum DMD case temperature, the maximum temperature of any individual micromirror in the active array, the maximum temperature of the window aperture, and the temperature gradient between case temperature and the predicted micromirror array temperature (see Figure 17).

See the Recommended Operating Conditions for applicable temperature limits.

8.6.1 Package Thermal Resistance

The DMD is designed to conduct absorbed and dissipated heat to the back of the type A package where it can be removed by an appropriate heat sink. The heat sink and cooling system must be capable of maintaining the package within the specified operational temperatures, refer to Figure 17. The total heat load on the DMD is typically driven by the incident light absorbed by the active area; although other contributions include light energy absorbed by the window aperture and electrical power dissipation of the array.

8.6.2 Case Temperature

The temperature of the DMD case can be measured directly. For consistency, thermal test point locations 1, 2, and 3 are defined, as shown in Figure 17.

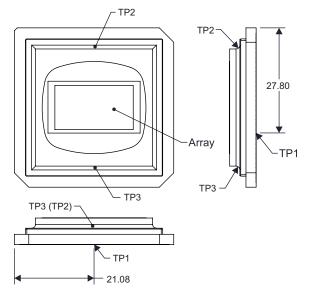


Figure 17. Thermal Test Point Location

Micromirror Array Temperature Calculation (continued)

8.6.3 Micromirror Array Temperature Calculation

Active array temperature cannot be measured directly; therefore, it must be computed analytically from measurement points on the outside of the package, package thermal resistance, electrical power, and illumination heat load. The relationship between array temperature and the reference ceramic temperature (test point number 1 in Figure 17) is provided by the following equations:

T_{Arrav} = Computed DMD active array temperature

= Measured Ceramic temperature at location (test point number 1) + (Temperature increase due to power incident to the array × array-to-ceramic resistance)

= $T_{Ceramic}$ + ($Q_{Array} \times R_{Array-To-Ceramic}$)

where

- T_{Ceramic} = Measured ceramic temperature (°C) at location (test point number 1)
- R_{Array-To-Ceramic} = DMD package thermal resistance from array to outside ceramic (°C/W)
- Q_{Array} = Total DMD array power, which is both electrical plus absorbed on the DMD active array (W)

 $Q_{Array} = Q_{Electrical} + (Q_{IIIumination} \times DMD absorption constant (0.42))$

where

- Q_{Electrical} = Approximate nominal electrical internal power dissipation (W)
- Q_{Illumination} = [Illumination power density × illumination area on DMD] (W)
- DMD absorption constant = 0.42

The electrical power dissipation of the DMD is variable and depends on the voltages, data rates and operating frequencies. The nominal electrical power dissipation of the DMD is variable and depends on the operating state of mirrors and the intensity of the light source. The DMD absorption constant of 0.42 assumes nominal operation with an illumination distribution of 83.7% on the active array, 11.9% on the array border, and 4.4% on the window aperture. A system aperture may be required to limit power incident on the package aperture since this area absorbs much more efficiently than the array.

Sample Calculation:

- Illumination power density = 2 W/cm²
- Illumination area = (2.0736 cm × 1.1664 cm) / 83.7% = 2.89 cm² (assumes 83.7% on the active array and 16.3% overfill)
- $Q_{IIIumination} = 2 \text{ W/cm}^2 \times 2.89 \text{ cm}^2 = 5.78 \text{ W}$
- Q_{Electrical} = 4.4 W
- R_{Array-To-Ceramic} = 0.5°C/W
- T_{Ceramic} = 20°C (measured on ceramic)
- Q_{Array} = 4.4 W + (5.78 W × 0.42) = 6.83 W
- $T_{Array} = 20^{\circ}C + (6.83 \text{ W} \times 0.5^{\circ}C/\text{W}) = 23.4^{\circ}C$

8.7 Micromirror Landed-On and Landed-Off Duty Cycle

8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle

The micromirror landed-on/landed-off duty cycle (landed duty cycle) denotes the amount of time (as a percentage) that an individual micromirror is landed in the On–state versus the amount of time the same micromirror is landed in the Off–state.

As an example, a landed duty cycle of 100/0 indicates that the referenced pixel is in the On-state 100% of the time (and in the Off-state 0% of the time); whereas 0/100 would indicate that the pixel is in the Off-state 100% of the time. Likewise, 50/50 indicates that the pixel is On 50% of the time and Off 50% of the time.

Note that when assessing landed duty cycle, the time spent switching from one state (ON or OFF) to the other state (OFF or ON) is considered negligible and is thus ignored.

Because a micromirror can only be landed in one state or the other (on or off), the two numbers (percentages) always add to 100.

8.7.2 Landed Duty Cycle and Useful Life of the DMD

Knowing the long-term average landed duty cycle (of the end product or application) is important because subjecting all (or a portion) of the DMD's micromirror array (also called the active array) to an asymmetric landed duty cycle for a prolonged period of time can reduce the usable life of the DMD.

Note that it is the symmetry/asymmetry of the landed duty cycle that is of relevance. The symmetry of the landed duty cycle is determined by how close the two numbers (percentages) are to being equal. For example, a landed duty cycle of 50/50 is perfectly symmetrical whereas a landed duty cycle of 100/0 or 0/100 is perfectly asymmetrical.

8.7.3 Landed Duty Cycle and Operational DMD Temperature

Operational DMD temperature and landed duty cycle interact to affect the usable life of the DMD, and this interaction can be exploited to reduce the impact that an asymmetrical landed duty cycle has on the DMD's usable life.

In practice, this curve specifies the maximum operating DMD temperature that the DMD should be operated at for a give long-term average landed duty.

8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application

During a given period of time, the landed duty cycle of a given pixel follows from the image content being displayed by that pixel.

For example, in the simplest case, when displaying pure-white on a given pixel for a given time period, that pixel will experience a 100/0 landed duty cycle during that time period. Likewise, when displaying pure-black, the pixel will experience a 0/100 landed duty cycle.

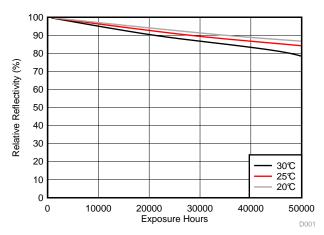
Between the two extremes (ignoring for the moment color and any image processing that may be applied to an incoming image), the landed duty cycle tracks one-to-one with the gray scale value, as shown in Table 5.

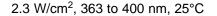
GRAYSCALE VALUE	LANDED DUTY CYCLE
0%	0/100
10%	10/90
20%	20/80
30%	30/70
40%	40/60
50%	50/50
60%	60/40
70%	70/30
80%	80/20
90%	90/10
100%	100/0

Table 5. Grayscale Value and Landed Duty Cycle

9 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


9.1 Application Information

The DLP9500UV devices must be coupled with the DLPC410 controller to provide a reliable solution for many different applications. The DMDs are spatial light modulators which reflect incoming light from an illumination source to one of two directions, with the primary direction being into a projection collection optic. Each application is derived primarily from the optical architecture of the system and the format of the data coming into the DLPC410. Applications of interest include 3D printing, lithography, medical systems, and compressive sensing.

9.1.1 DMD Reflectivity Characteristics

TI assumes no responsibility for end-equipment reflectivity performance. Achieving the desired end-equipment reflectivity performance involves making trade-offs between numerous component and system design parameters. Typical DMD reflectivity characteristics over UV exposure times are represented in Figure 18.

Figure 18. Nominal DMD Relative Reflectivity Percentage vs Total Exposure Hours

DMD reflectivity includes micromirror surface reflectivity and window transmission. The DMD was characterized for DMD reflectivity using a broadband light source (200-W metal-halide lamp). Data is based off of a 2.3 W/cm² UV exposure at the DMD surface (365 nm peak output) using a 363 nm high pass filter between the light source and the DMD. (Contact your local Texas Instruments representative for additional information about power density measurements and UV filter details.)

9.1.1.1 Design Considerations Influencing DMD Reflectivity

Optimal, long-term performance of the digital micromirror device (DMD) can be affected by various application parameters. The following is a list of some of these application parameters and includes high level design recommendations that may help extend relative reflectivity from time zero:

- Illumination spectrum using longer wavelengths for operation while preventing shorter wavelengths from striking the DMD
- Illumination power density using lower power density
- DMD case temperature operating the DMD with the case temperature at the low end of its specification
- Cumulative incident illumination Limiting the total hours of UV illumination exposure when the DMD is not actively steering UV light in the application. For example, a design might include a shutter to block the

Application Information (continued)

illumination or LED illumination where the LEDs can be strobed off during periods not requiring UV exposure.

• Micromirror landed duty cycle – applying a 50/50 duty cycle pattern during periods where operational patterns are not required.

9.2 Typical Application

The DLP9500UV DMD is designed with a window which allows transmission of ultraviolet (UV) light. This makes it well suited for UV applications requiring fast, spatially programmable light patterns using the micromirror array. UV wavelengths can affect the DMD differently than visible wavelengths. There are system level considerations which should be leveraged when designing systems using this DMD.

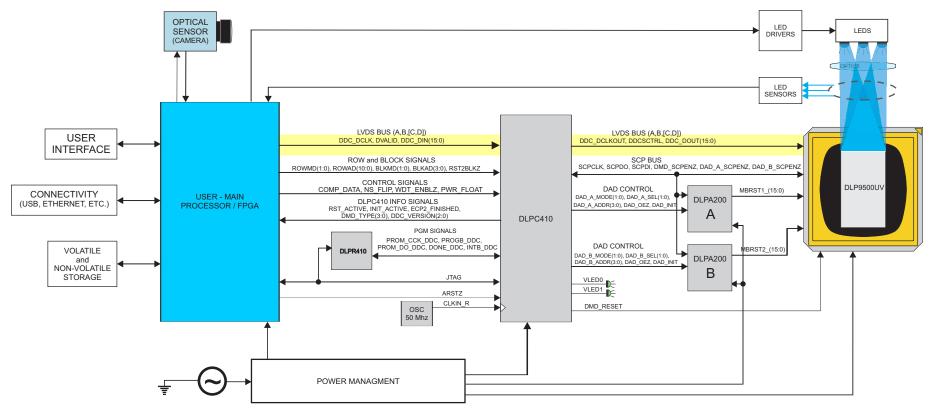


Figure 19. DLPC410 and DLP9500UV Embedded Example Block Diagram

DLP9500UV

ZHCSE69C-NOVEMBER 2014-REVISED MARCH 2017

www.ti.com.cn

9.2.1 Design Requirements

All applications using the DLP9500UV chipset require both the controller and the DMD components for operation. The system also requires an external parallel flash memory device loaded with the DLPC410 configuration and support firmware. The chipset has several system interfaces and requires some support circuitry. The following interfaces and support circuitry are required:

- DLPC410 system interfaces:
 - Control interface
 - Trigger interface
 - Input data interface
 - Illumination interface
 - Reference clock
 - Program interface
- DLP9500UV interfaces:
 - DLPC410 to DLP9500UV digital data
 - DLPC410 to DLP9500UV control interface
 - DLPC410 to DLP9500UV micromirror reset control interface
 - DLPC410 to DLPA200 micromirror driver
 - DLPA200 to DLP9500UV micromirror reset

9.2.1.1 Device Description

The DLP9500UV 1080p chipset offers developers a convenient way to design a wide variety of industrial, medical, telecom and advanced display applications by delivering maximum flexibility in formatting data, sequencing data, and light patterns.

The DLP9500UV 1080p chipset includes the following four components: DMD digital controller (DLPC410), EEPROM (DLPR410), DMD micromirror driver (DLPA200), and a DMD (DLP9500UV).

DLPC410 Digital Controller for DLP Discovery 4100 chipset

- · Provides high speed 2XLVDS data and control interface to the user
- Drives mirror clocking pulse and timing information to the DLPA200
- Supports random row addressing
- Controls illumination

DLPR410 PROM for DLP Discovery 4100 chipset

• Contains startup configuration information for the DLPC410

DLPA200 DMD Micromirror Driver

 Generates micromirror clocking pulse control (sometimes referred to as a reset) of 15 banks of DMD mirrors. (Two are required for the DLP9500UV).

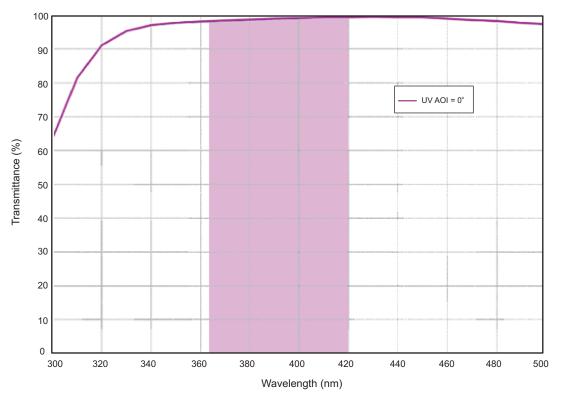
DLP9500UV DLP 0.95 1080p 2xLVDS UV Type-A DMD

Steers light in two digital positions (+12° and -12°) using 1920 x 1080 micromirror array of aluminum mirrors.

		jj
QUANTITY	TI PART	DESCRIPTION
1	DLP9500UV	DLP 0.95 1080p 2xLVDS UV Type-A DMD
1	DLPC410	Digital Controller for DLP Discovery 4100 chipset
1	DLPR410	PROM for DLP Discovery 4100 chipset
2	DLPA200	DMD Micromirror Driver

Table 6. DLP DLP9500UV Chipset Configurations

Reliable function and operation of DLP9500UV 1080p chipsets require the components be used in conjunction with each other. This document describes the proper integration and use of the DLP9500UV 1080p chipset components.


The DLP9500UV 1080p chipset can be combined with a user programmable application FPGA (not included) to create high performance systems.

9.2.2 Detailed Design Procedure

The DLP9500UV DMD is designed with a window which allows transmission of UV light. This makes it well suited for UV applications requiring fast, spatially programmable light patterns using the micromirror array. UV wavelengths can affect the DMD differently than visible wavelengths. There are system level considerations which should be leveraged when designing systems using this DMD.

9.2.3 Application Curve

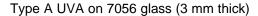


Figure 20. Corning 7056 UV Window Transmittance (Maximum Transmission Region)

10 Power Supply Recommendations

10.1 Power-Up Sequence (Handled by the DLPC410)

The sequence of events for DMD system power-up is:

- 1. Apply logic supply voltages to the DLPA200 and to the DMD according to DMD specifications.
- 2. Place DLPA200 drivers into high impedance states.
- 3. Turn on DLPA200 bias, offset, or reset supplies according to driver specifications.
- 4. After all supply voltages are assured to be within the limits specified and with all micromirror clocking pulse operations logically suspended, enable all drivers to either VOFFSET or VBIAS level.
- 5. Begin micromirror clocking pulse operations.

10.2 DMD Power-Up and Power-Down Procedures

Failure to adhere to the prescribed power-up and power-down procedures may affect device reliability. The DLP9500UV power-up and power-down procedures are defined by the DLPC410 data sheet (DLPS024). These procedures must be followed to ensure reliable operation of the device.

11 Layout

11.1 Layout Guidelines

The DLP9500UV is part of a chipset that is controlled by the DLPC410 in conjunction with the DLPA200. These guidelines are targeted at designing a PCB board with these components.

11.1.1 Impedance Requirements

Signals should be routed to have a matched impedance of 50 Ω ±10% except for LVDS differential pairs (DMD_DAT_Xnn, DMD_DCKL_Xn, and DMD_SCTRL_Xn) which should be matched to 100 Ω ±10% across each pair.

11.1.2 PCB Signal Routing

When designing a PCB board for the DLP9500UV controlled by the DLPC410 in conjunction with the DLPA200s, the following are recommended:

Signal trace corners should be no sharper than 45°. Adjacent signal layers should have the predominate traces routed orthogonal to each other. TI recommends that critical signals be hand routed in the following order: DDR2 Memory, DMD (LVDS signals), then DLPA200 signals.

TI does not recommend signal routing on power or ground planes.

TI does not recommend ground plane slots.

High speed signal traces should not cross over slots in adjacent power and/or ground planes.

SIGNAL	CONSTRAINTS
LVDS (DMD_DAT_xnn, DMD_DCKL_xn, and DMD_SCTRL_xn)	P-to-N data, clock, and SCTRL: <10 mils (0.25 mm); Pair-to-pair <10 mils (0.25 mm); Bundle-to-bundle <2000 mils (50 mm, for example DMD_DAT_Ann to DMD_DAT_Bnn) Trace width: 4 mil (0.1 mm) Trace spacing: In ball field – 4 mil (0.11 mm); PCB etch – 14 mil (0.36 mm) Maximum recommended trace length <6 inches (150 mm)

Table 7. Important Signal Trace Constraints

Table 8. Power Trace Widths and Spacing

SIGNAL NAME	SIGNAL NAME MINIMUM TRACE WIDTH		LAYOUT REQUIREMENTS
GND	Maximize	5 mil (0.13 mm)	Maximize trace width to connecting pin as a minimum
VCC, VCC2	VCC, VCC2 20 mil (0.51 mm)		
MBRST[14:0]	11 mil (0.28 mm)	15 mil (0.38 mm)	

11.1.3 Fiducials

Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad). Fiducials for optical auto insertion are placed on three corners of both sides of the PCB.

11.1.4 PCB Layout Guidelines

A target impedance of 50 Ω for single ended signals and 100 Ω between LVDS signals is specified for all signal layers.

11.1.4.1 DMD Interface

The digital interface from the DLPC410 to the DMD are LVDS signals that run at clock rates up to 400 MHz. Data is clocked into the DMD on both the rising and falling edge of the clock, so the data rate is 800 MHz. The LVDS signals should have 100 Ω differential impedance. The differential signals should be matched but kept as short as possible. Parallel termination at the LVDS receiver is in the DMD; therefore, on board termination is not necessary.

11.1.4.1.1 Trace Length Matching

The DLPC410 DMD data signals require precise length matching. Differential signals should have impedance of 100 Ω (with 5% tolerance). It is important that the propagation delays are matched. The maximum differential pair uncoupled length is 100 mils with a relative propagation delay of ±25 mil between the p and n. Matching all signals exactly will maximize the channel margin. The signal path through all boards, flex cables and internal DMD routing must be considered in this calculation.

11.1.4.2 DLP9500UV Decoupling

General decoupling capacitors for the DLP9500UV should be distributed around the PCB and placed to minimize the distance from IC voltage and ground pads. Each decoupling capacitor (0.1 μ F recommended) should have vias directly to the ground and power planes. Via sharing between components (discreet or integrated) is discouraged. The power and ground pads of the DLP9500UV should be tied to the voltage and ground planes with their own vias.

11.1.4.2.1 Decoupling Capacitors

Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and ground pin of the component. TI recommends that the placement of and routing for the decoupling capacitors meet the following guidelines:

- The supply voltage pin of the capacitor should be located close to the device supply voltage pin or pins. The decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be tied to the voltage or ground plane through separate vias.
- The trace lengths of the voltage and ground connections for decoupling capacitors and components should be less than 0.1 inch to minimize inductance.
- The trace width of the power and ground connection to decoupling capacitors and components should be as wide as possible to minimize inductance.
- Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance and improve noise performance.
- Decoupling performance can be improved by using low ESR and low ESL capacitors.

11.1.4.3 VCC and VCC2

The VCC pins of the DMD should be connected directly to the DMD VCC plane. Decoupling for the VCC should be distributed around the DMD and placed to minimize the distance from the voltage and ground pads. Each decoupling capacitor should have vias directly connected to the ground and power planes. The VCC and GND pads of the DMD should be tied to the VCC and ground planes with their own vias.

The VCC2 voltage can be routed to the DMD as a trace. Decoupling capacitors should be placed to minimize the distance from the DMD's VCC2 and ground pads. Using wide etch from the decoupling capacitors to the DMD connection will reduce inductance and improve decoupling performance.

11.1.4.4 DMD Layout

See the respective sections in this data sheet for package dimensions, timing and pin out information.

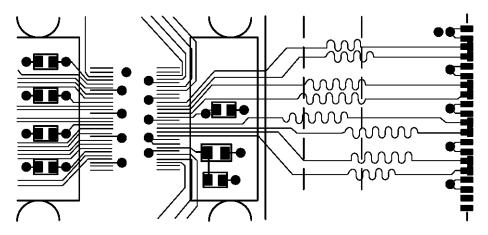
11.1.4.5 DLPA200

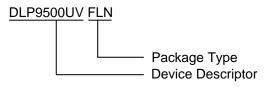
The DLPA200 generates the micromirror clocking pulses for the DMD. The DMD-drive outputs from the DLPA200 (MBRST[29:0] should be routed with minimum trace width of 11 mil and a minimum spacing of 15 mil. The VCC and VCC2 traces from the output capacitors to the DLPA200 should also be routed with a minimum trace width and spacing of 11 mil and 15 mil, respectively. See the DLPA200 customer data sheet DLPS015 for mechanical package and layout information.

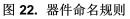
DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017

11.2 Layout Example

For LVDS (and other differential signal) pairs and groups, it is important to match trace lengths. In the area of the dashed lines, Figure 21 shows correct matching of signal pair lengths with serpentine sections to maintain the correct impedance.

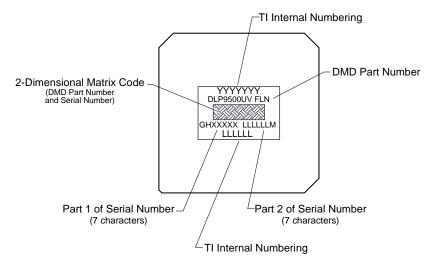



Figure 21. Mitering LVDS Traces to Match Lengths



12 器件和文档支持

- 12.1 器件支持
- 12.1.1 器件命名规则


图 22 提供了读取任一 DLP 器件完整器件名称的图例。

12.1.2 器件标记

图 23 显示了器件标记字段。

DLP9500UV ZHCSE69C – NOVEMBER 2014–REVISED MARCH 2017 TEXAS INSTRUMENTS

www.ti.com.cn

12.2 文档支持

12.2.1 相关文档

以下文档包含关于使用 DLP9500UV 器件的更多信息。

- 《适用于 DLP Discovery 4100 芯片组的 DLPC410 数字控制器产品说明书》
- 《DLPA200 DMD 微镜驱动器产品说明书》
- 《适用于 DLP Discovery 4100 芯片组的 DLPR410 PROM 产品说明书》

12.3 相关链接

下面的表格列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链接。

器件	产品文件夹	样片与购买	技术文档	工具和软件	支持和社区							
DLP9500UV	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处							
DLPA200	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处							
DLPC410	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处							
DLPR410	请单击此处	请单击此处	请单击此处	请单击此处	请单击此处							

表 9. 相关链接

12.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.5 商标

Discovery, E2E are trademarks of Texas Instruments. DLP is a registered trademark of Texas Instruments. All other trademarks are the property of their respective owners.

12.6 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损
 你。

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更, 恕不另行通知 和修订此文档。如欲获取此产品说明书的浏览器版本, 请参阅左侧的导航。

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
DLP9500UVFLN	ACTIVE	CLGA	FLN	355	12	RoHS & Green	NI-PD-AU	N / A for Pkg Type	20 to 30		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

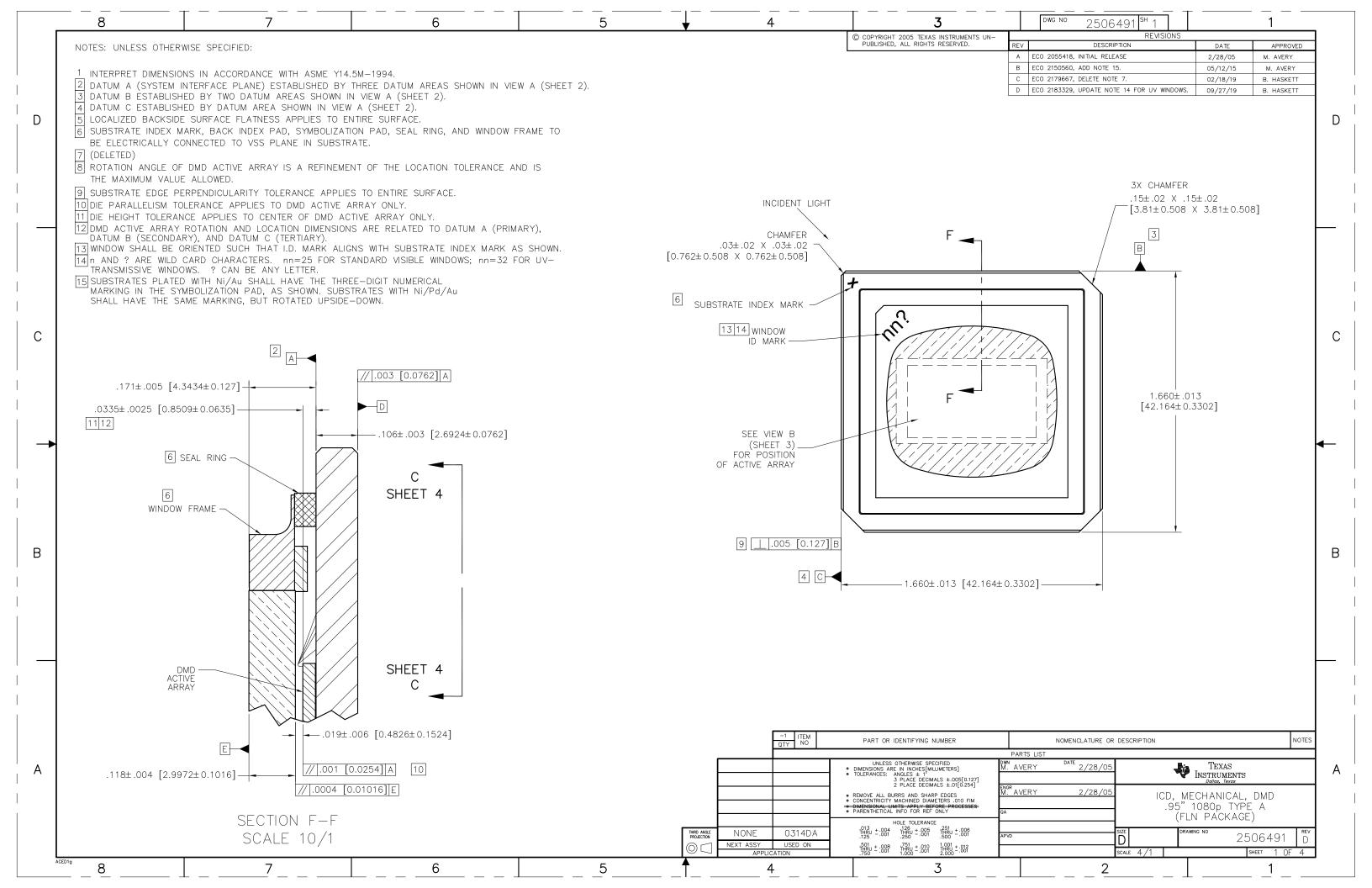
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

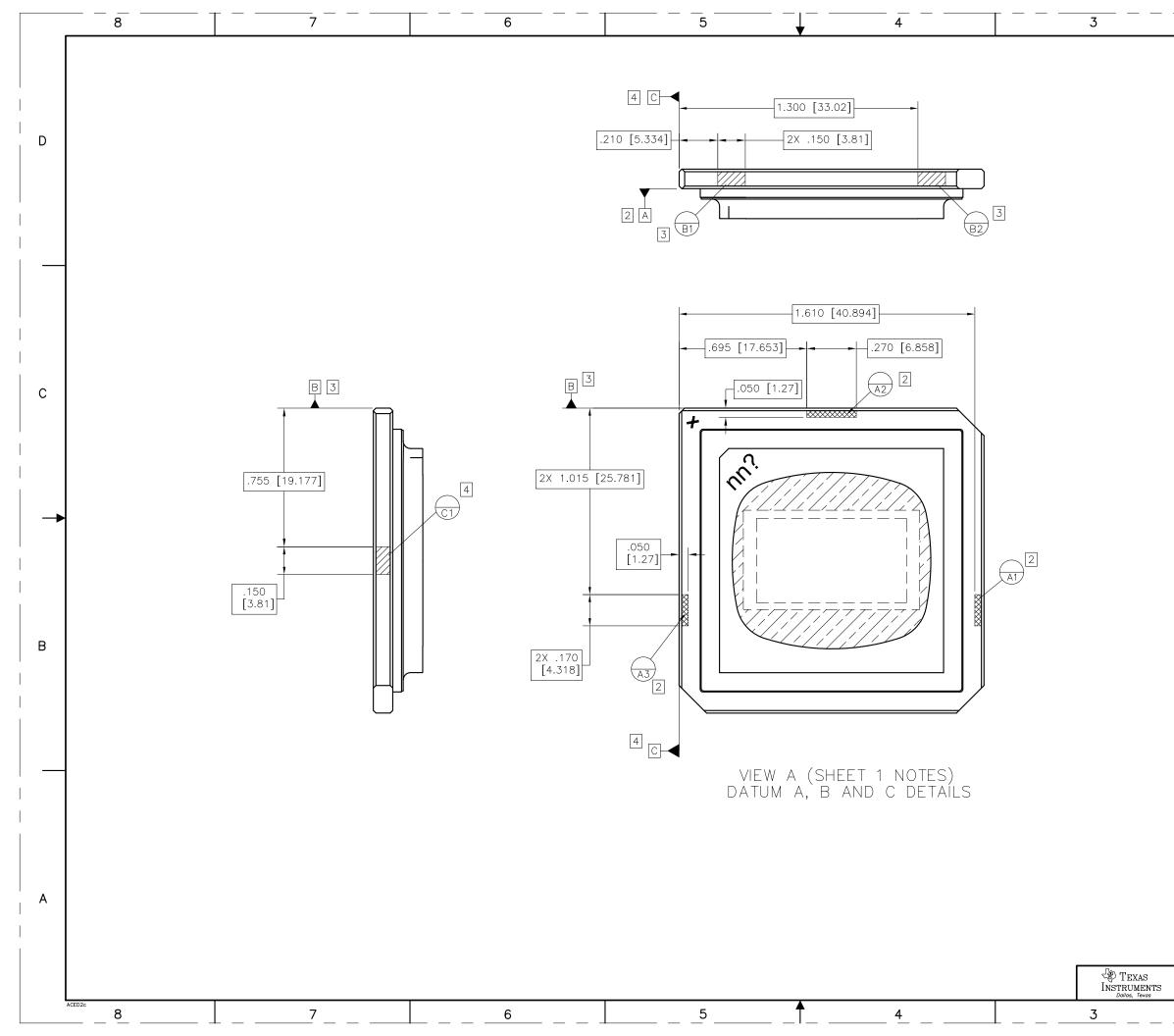
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TEXAS INSTRUMENTS

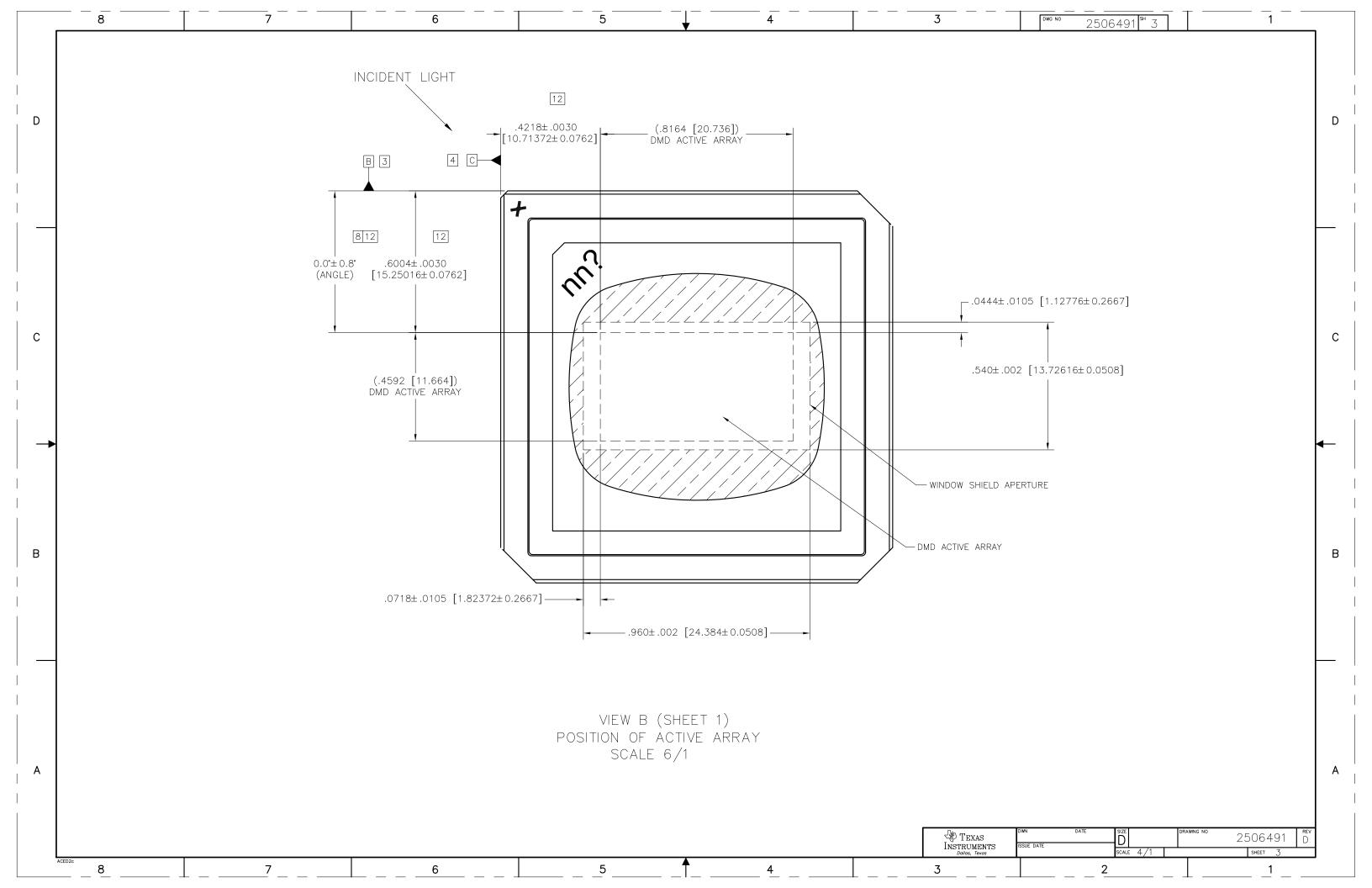
www.ti.com

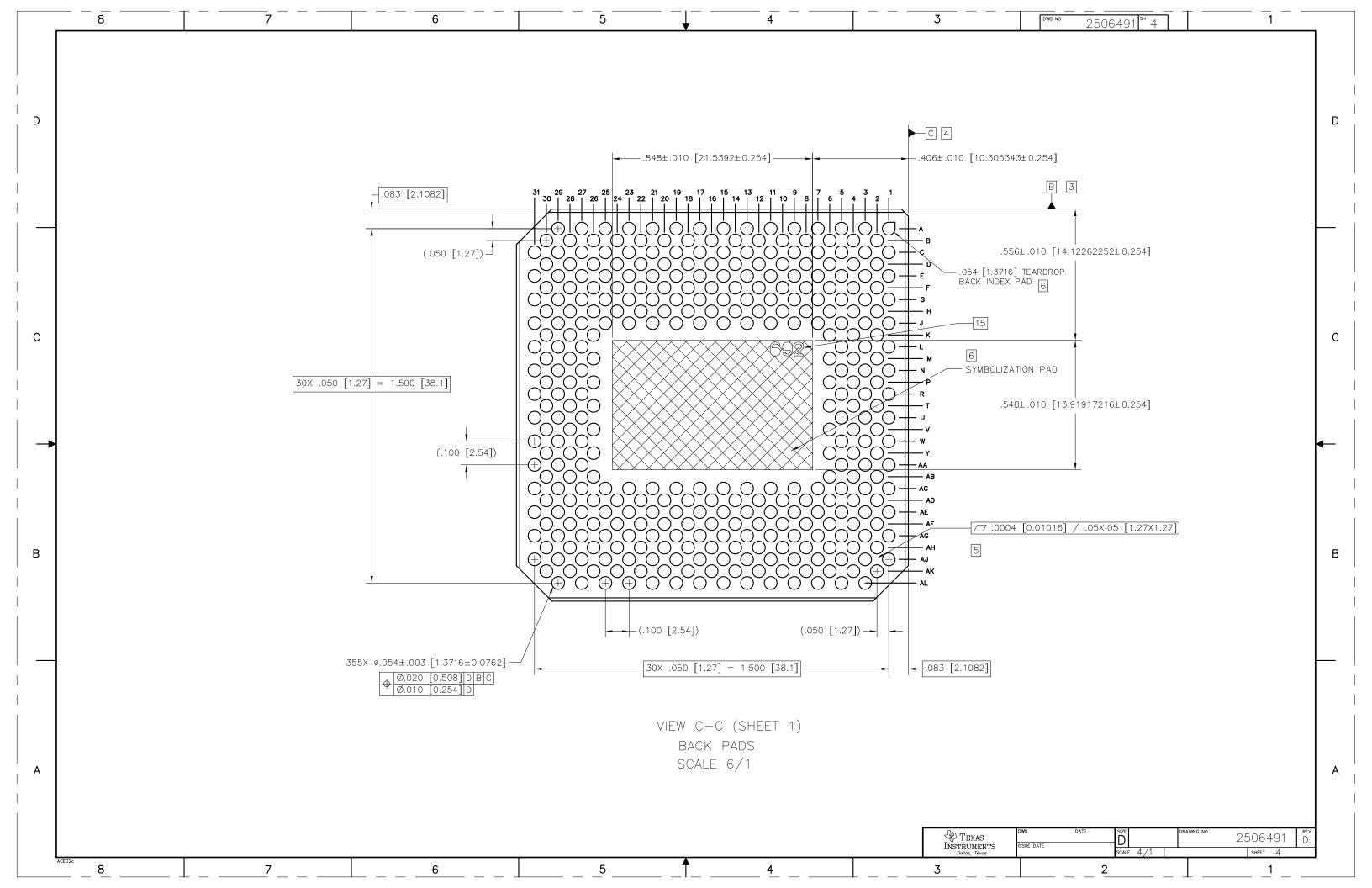
TRAY


10-Sep-2022



Chamfer on Tray corner indicates Pin 1 orientation of packed units.


*All dimensions are nominal


Device	Package Name	Package Type	Pins	SPQ	Unit array matrix	Max temperature (°C)	L (mm)	W (mm)	K0 (µm)	P1 (mm)	CL (mm)	CW (mm)
DLP9500UVFLN	FLN	CLGA	355	12	4 x 5	60	254.76	221.74	48590	48.59	30.22	31.98

 	DWG NO		б491 ^{вн} 2	>	T				
	1			<u> </u>					
									D
									С
									◀──
									В
									A
WN SSUE DA	DA	TE	D		DRAWING NO		6491	rev D	
		_ 2	scale 4/1			SHE	et 2		

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。 您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成 本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022,德州仪器 (TI) 公司