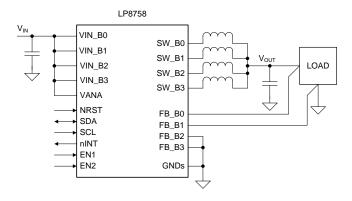


LP8758-B0

ZHCSDQ0C -MARCH 2015-REVISED AUGUST 2018

LP8758-B0 四相直流/直流降压转换器


1 特性

- 高效降压四相直流/直流转换器内核:
 - 最大输出电流: 16A
 - 自动 PWM-PFM 和强制 PWM 操作
 - 自动相位增加/减少和强制多相操作
 - 远程差分反馈电压感测
 - 可编程输出电压转换率范围: 0.5mV/μs 至 30mV/μs
 - V_{OUT} 范围: 0.5V 至 3.36V(支持动态电压调节 (DVS))
- 可通过使能信号编程启动和关断延迟
- I²C 兼容接口,支持标准 (100kHz)、快速 (400kHz)、快速+ (1MHz) 和高速 (3.4MHz) 四种模式
- 具有可编程屏蔽的中断功能
- 负载电流测量
- 输出短路和过载保护
- 用于降低电磁干扰 (EMI) 的扩展频谱模式和相位交错
- 过热警告和保护
- 欠压闭锁 (UVLO)

2 应用

- 智能手机、电子书和平板电脑
- 游戏设备

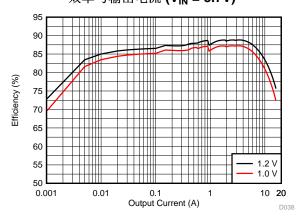
4 简化原理图

3 说明

LP8758 专为满足最新应用处理器的电源管理要求而设计,这些应用处理器适用于手机和类似便携式 应用。该器件包含 4 个降压直流/直流转换器内核,它们一起捆绑在单个四相降压转换器中。该器件通过 I²C 兼容串行接口进行控制。

自动 PWM-PFM(AUTO 模式)操作搭配自动相位增加/减少操作,可在较宽输出电流范围内以最大限度提高效率。LP8758 支持远程差分电压感测,可补偿稳压器输出与负载点之间的 IR 压降 (IR drop),从而提高输出电压的精度。

LP8758 支持可编程启动和关断延迟与使能信号同步。


该器件的保护 功能 包括短路保护、电流限制、输入电源欠压锁定 (UVLO) 以及过热警告和关断功能。该器件还具有一些错误标志,用于提供自身的状态信息。此外,LP8758 器件无需添加外部电流感测电阻即可支持负载电流测量。在器件启动和电压变化期间,器件会对转换率加以控制,以便最大限度减少输出电压过冲和浪涌电流。

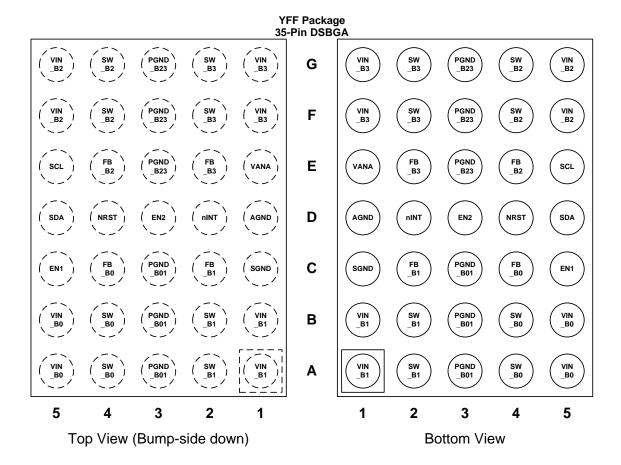
器件信息⁽¹⁾

器件编号	封装	封装尺寸 (标称值)
LP8758-B0	DSBGA (35)	2.88mm x 2.13mm

(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

效率与输出电流 (V_{IN} = 3.7V)

 \triangle


		目录			
1	特性	1		8.4 Device Functional Modes	
2	应用	1		8.5 Programming	
3	说明	1		8.6 Register Maps	
4	简化原理图	1	9	Application and Implementation	40
5	修订历史记录	2		9.1 Application Information	40
6	Pin Configuration and Functions			9.2 Typical Application	40
7	Specifications		10	Power Supply Recommendations	47
•	7.1 Absolute Maximum Ratings		11	Layout	48
	7.2 ESD Ratings			11.1 Layout Guidelines	48
	7.3 Recommended Operating Conditions			11.2 Layout Example	49
	7.4 Thermal Information		12	器件和文档支持	<mark>50</mark>
	7.5 Electrical Characteristics	_		12.1 器件支持	50
	7.6 I ² C Serial Bus Timing Parameter	•		12.2 文档支持	50
	7.7 Switching Characteristics			12.3 接收文档更新通知	50
	7.8 Typical Characteristics			12.4 社区资源	50
8	Detailed Description			12.5 商标	50
0	8.1 Overview			12.6 静电放电警告	<u>50</u>
				12.7 术语表	<u>50</u>
	8.2 Functional Block Diagram		13	机械、封装和可订购信息	50
	8.3 Feature Description	14		POPAL PURPLE VIOLENCE	
-	多订历史记录 ges from Revision B (May 2016) to Revision C				Page

5

Changes from Revision B (May 2016) to Revision C	Page
Changed logic low level to 0 V and high level to VANA up to 3.6 V	5
Added support for I2C signals up to 3.3V	5
Changed "700 μs" to "1.2 ms"	
Changes from Revision A (May 2015) to Revision B	Page
Changes from Original (March 2015) to Revision A	Page
Changes from Original (March 2015) to Revision A	

6 Pin Configuration and Functions

Pin Functions

	PIN	TVDE	DESCRIPTION
NUMBER	NAME	TYPE	DESCRIPTION
A1, B1	VIN_B1	Р	Input for Buck 1. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
A2, B2	SW_B1	Α	Buck 1 switch node.
A3, B3, C3	PGND_B01	G	Power Ground for Buck 0 and Buck 1.
A4, B4	SW_B0	Α	Buck 0 switch node.
A5, B5	VIN_B0	Р	Input for Buck 0. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
C1	SGND	G	Substrate Ground.
C2	FB_B1	Α	Output ground feedback (negative) for Buck 0.
C4	FB_B0	Α	Output voltage feedback (positive) for Buck 0.
C5	EN1	D/I	Programmable Enable signal for Buck regulator. Can be also configured to switch between two output voltage levels.
D1	AGND	G	Ground.
D2	nINT	D/O	Open-drain interrupt output. Active LOW.
D3	EN2	D/I	Programmable Enable signal for Buck regulator. Can be also configured to switch between two output voltage levels.
D4	NRST	D/I	Reset signal for the device.
D5	SDA	D/I/O	Serial interface data input and output for system access. Connect a pull-up resistor.
E1	VANA	Р	Supply voltage for Analog and Digital blocks. VANA pin must be connected to same voltage as VIN_Bx pins.
E2	FB_B3	Α	Output voltage feedback (positive) for Buck 3 - Connect to ground in 4-phase configuration.
E4	FB_B2	Α	Output voltage feedback (positive) for Buck 2 Connect to ground in 4-phase configuration.
E5	SCL	D/I	Serial interface clock input for system access. Connect a pull-up resistor.
F1, G1	VIN_B3	Р	Input for Buck 3. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
F2, G2	SW_B3	Α	Buck 3 switch node.
E3, F3, G3	PGND_B23	G	Power Ground for Buck 2 and Buck 3.
F4, G4	SW_B2	Α	Buck 2 switch node.
F5, G5	VIN_B2	Р	Input for Buck 2. The separate power pins VIN_Bx are not connected together internally - VIN_Bx pins must be connected together in the application and be locally bypassed.
A: Analog Pin	, D: Digital Pin, G	: Ground	Pin, P: Power Pin, I: Input Pin, O: Output Pin

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)(2)

		MIN	MAX	UNIT
INPUT VOLTAGE				
VIN_Bx, VANA	Voltage on power connections	-0.3	6	V
SW_Bx	Voltage on buck switch nodes	-0.3	(VIN_Bx + 0.3) with 6 V max	V
FB_Bx	Voltage on buck voltage sense nodes	-0.3	(VANA + 0.3) with 6 V max	V
NRST	Voltage on NRST input	-0.3	3.6	V
ENx, SDA, SCL, nIN	T Voltage on logic pins (input or output pins)	-0.3	3.6	
CURRENT				
VIN_Bx, SW_Bx, PGND_Bx	Current on power pins (average current over 100k hour lifetime, $T_J = 125$ °C)		0.62	A/pin
TEMPERATURE			·	
Junction temperature	, T _{J-MAX}	-40	150	°C
Storage temperature	, T _{stg}	-65	150	°C
Maximum lead tempe	erature (soldering, 10 sec.) ⁽³⁾		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
		Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
INPUT VOLTAGE				
VIN_Bx, VANA	Voltage on power connections	2.5	5.5	V
NRST	Voltage on NRST	0	VANA up to 3.6	V
ENx, nINT	Voltage on logic pins (input or output pins)	0	VANA up to 3.6	V
SCL, SDA	Voltage on I ² C interface, standard (100 kHz), fast (400 khz), fast+ (1 MHz), and high-speed (3.4 MHz) modes	0	1.95	V
	Voltage on I ² C interface, standard (100 kHz), fast (400 kHz), and fast+ (1 MHz) modes	0	VANA up to 3.6	V
TEMPERATURE			·	
Junction temperature, T _J		-40	125	°C
Ambient temperature, T _A		-40	85	°C

⁽²⁾ All voltage values are with respect to network ground.

⁽³⁾ For detailed soldering specifications and information, refer to AN-1112 DSBGA Wafer Level Chip Scale Package (SNVA009).

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.4 Thermal Information

		LP8758	
	THERMAL METRIC ⁽¹⁾	YFF (DSBGA)	UNIT
		35 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	56.1	°C/W
$R_{\theta JCtop}$	Junction-to-case (top) thermal resistance	0.2	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	8.5	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.9	°C/W
ΨЈВ	Junction-to-board characterization parameter	8.4	°C/W
$R_{\theta JCbot}$	Junction-to-case (bottom) thermal resistance	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$, specified $V_{(\text{VANA})}$, V_{IN} , $V_{(\text{NRST})}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{(\text{VANA})} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
EXTERNAL	COMPONENTS					
C _{IN}	Input filtering capacitance	Connected from VIN_Bx to PGND_Bx	1.9	10		μF
C _{OUT}	Output filtering capacitance, local	Capacitance per phase	10	22		μF
C _{OUT-TOTAL}	Output capacitance, total (local and remote)	Total output capacitance, 4-phase configuration	40		200	μF
ESR _C	Input and output capacitor ESR	[1-10] MHz		2	10	mΩ
	Industor	Industry on of the industry	0.3	3 or 0.47		μH
L	Inductor	Inductance of the inductor	-30%		30%	
DCR _L	Inductor DCR	TOKO, DFE252010F-R33M		16		$m\Omega$
BUCK REGI	JLATOR				·	
V _{IN}	Input voltage range	Voltage between VIN_Bx and ground pins. VANA must be connected to the same supply as VIN_Bx.	2.5	3.7	5.5	V
		Programmable voltage range	0.5	1	3.36	V
	0	Step size, 0.5 V ≤ V _{OUT} < 0.73 V		10		
C _{IN} C _{OUT} C _{OUT-TOTAL} ESR _C L DCR _L BUCK REG V _{IN}	Output voltage	Step size, 0.73 V ≤ V _{OUT} < 1.4 V		5		mV
		Step size, 1.4 V ≤ V _{OUT} ≤ 3.36 V		20		
		Output current, 4-phase configuration			12 ⁽³⁾	
l _{OUT}	Output current	Output current, 4-phase configuration, V _{IN} > 3 V, V _{OUT} < 2 V			16 ⁽³⁾	Α
	Dropout voltage	$V_{IN} - V_{OUT}$	0.7			V
	DC output voltage accuracy, includes voltage reference,	Forced PWM mode, 0.8 V \leq V _{OUT} \leq 1.2 V, 2.5 V \leq V _{IN} \leq 4.5 V, T _J = 25°C, 0 \leq I _{OUT} \leq I _{OUT} (max)	-1%		1.5%	
	DC load and line regulations, process and temperature	PFM mode, the average output voltage level is increased by max. 20 mV	min (–2%, –15 mV)		nax (2%, 5 mV) 20 mV	

⁽¹⁾ All voltage values are with respect to network ground.

⁽²⁾ Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified, but do represent the most likely norm.

⁽³⁾ The maximum output current is also limited by the junction temperature and maximum average current over lifetime. The power dissipation inside the die increases the junction temperature and limits the maximum current depending of the length of the current pulse, efficiency, board and ambient temperature. The maximum average current/pin over lifetime is described in Absolute Maximum Ratings.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$, specified $\text{V}_{(\text{VANA})}, \text{V}_{\text{IN}}, \text{V}_{(\text{NRST})}, \text{V}_{\text{OUT}}$ and I_{OUT} range, unless otherwise noted. Typical values are at $\text{T}_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3 \text{ MHz}$, $\text{V}_{(\text{VANA})} = \text{V}_{\text{IN}} = 3.7 \text{ V}$ and $\text{V}_{\text{OUT}} = 1 \text{ V}$ unless otherwise noted. $^{(1)(2)}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Ripple, 4-phase	PWM mode, L = 0.33 μH		10		
	configuration	PFM mode, L = 0.33 µH		10		mV_{p-p}
C _{LNR}	DC line regulation	$I_{OUT} = I_{OUT(max)}$		±0.05		%/V
OC _{LDR}	DC load regulation in PWM mode	I _{OUT} from 0 to I _{OUT(max)}		0.3%		
		I_{OUT} = 1 A to 8 A, T_R = 400 ns, PWM mode, C_{OUT} = 100 μ F, L = 0.33 μ H		-45		mV
	Undershoot for transient load step response, 4-phase configuration	$2.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 4.5 \text{ V}, 0.8 \text{ V} \leq \text{V}_{\text{OUT}} \leq 1.2$ V, $\text{I}_{\text{OUT}} = 0.1 \text{ A to } 4.1 \text{ A}, T_{\text{R}} = 100 \text{ ns},$ AUTO mode, $\text{C}_{\text{OUT}} = 100 \mu\text{F}, \text{L} = 0.33 \mu\text{H}$		-35		mV
.	Overshoot for transient load step response, 4-phase configuration	$\begin{array}{l} 3 \text{ V} \leq \text{V}_{\text{IN}} \leq 4.5 \text{ V}, \ 0.8 \text{ V} \leq \text{V}_{\text{OUT}} \leq 1.2 \text{ V}, \\ \text{I}_{\text{OUT}} \text{ from 1 A to 12 A, T}_{\text{R}} = 1000 \text{ ns}, \\ \text{C}_{\text{OUT}} = 100 \text{ \muF}, \ L = 0.33 \text{ \muH} \end{array}$		– 45		mV
T _{LDSR}		I_{OUT} = 8 A to 1 A, T_F = 400 ns, PWM mode, C_{OUT} = 100 $\mu F, L$ = 0.33 μH		45		mV
		$\begin{array}{l} 2.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 4.5 \text{ V}, 0.8 \text{ V} \leq \text{V}_{\text{OUT}} \leq 1.2 \\ \text{V, I}_{\text{OUT}} = 4.1 \text{ A to 0.1 A, T}_{\text{F}} = 100 \text{ ns,} \\ \text{AUTO mode, C}_{\text{OUT}} = 100 \mu\text{F, L} = 0.33 \\ \mu\text{H} \end{array}$		25		mV
		$\begin{array}{l} 3 \text{ V} \leq \text{V}_{\text{IN}} \leq 4.5 \text{ V}, 0.8 \text{ V} \leq \text{V}_{\text{OUT}} \leq 1.2 \text{ V}, \\ \text{I}_{\text{OUT}} \text{ from 12 A to 1 A, T}_{\text{F}} = 1000 \text{ ns}, \\ \text{C}_{\text{OUT}} = 100 \text{ \muF}, \text{L} = 0.33 \text{ \muH} \end{array}$		50		mV
Γ_{LNSR}	Transient line response	V_{IN} stepping 2.5 V \leftrightarrow 3 V, $T_R = T_F = 10$ μs , $I_{OUT} = I_{OUT(max)}$		±20		mV
		Programmable range	1.5		5	Α
	Forward current limit (peak	Step size		0.5		
IM FWD	for every switching cycle)	Accuracy, 3 V \leq V _{IN} \leq 5.5 V, I _{LIM} = 5 A	-5%	7.5%	5 20% 20% 2.4 90 50	
		Accuracy, 2.5 V \leq V _{IN} $<$ 3 V, I _{LIM} $=$ 5 A	-20%	7.5%	20%	
LIM NEG	Negative current limit		1.6	2	2.4	Α
R _{DS(ON)} HS ET	On-resistance, high-side FET	Each phase, between VIN_Bx and SW_Bx pins (I = 1 A)		40	90	$m\Omega$
R _{DS(ON)} LS	On-resistance, low-side FET	Each phase, between SW_Bx and PGND_Bx pins (I = 1 A)		33	50	mΩ
	Current balancing	Current mismatch between phases, I_{OUT} > 1000 mA / phase, 0.8 V \leq V _{OUT} \leq 1.2 V			10%	
	Overshoot during start-up	V _{OUT} = 1 V, Slew rate = 10 mV/μs			50	mV
PFM-PWM	PFM-to-PWM transition - current threshold ⁽⁴⁾			600		mA
PWM-PFM	PWM-to-PFM transition - current threshold ⁽⁴⁾			240		mA
		From 1-phase to 2-phase		1000		
ADD	Phase-adding level	From 2-phase to 3-phase		2000		mA
		From 3-phase to 4-phase		3000		
		From 2-phase to 1-phase		750		
SHED	Phase-shedding level	From 3-phase to 2-phase		1500		mA
		From 4-phase to 3-phase		2300		
	Output pulldown resistance	Regulator disabled	150	250	350	Ω

⁽⁴⁾ The final PFM-to-PWM and PWM-to-PFM transition current varies slightly and is dependant on the output voltage, input voltage, and the magnitude of inductor's ripple current.

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$, specified $\text{V}_{(\text{VANA})}$, V_{IN} , $\text{V}_{(\text{NRST})}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $\text{T}_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $\text{V}_{(\text{VANA})} = \text{V}_{\text{IN}} = 3.7$ V and $\text{V}_{\text{OUT}} = 1$ V unless otherwise noted. (1)(2)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Powergood threshold for interrupt	Rising ramp voltage, enable or voltage change	-23	-17	-10	>/
	BUCKx_INT(BUCKx_SC_IN T), difference from final voltage	Falling ramp, voltage change	10	17	23	mV
	Powergood threshold for status signal BUCKx_STAT(BUCKx_PG_STAT)	During operation, status signal is forced to '0' during voltage change	-23	-17	-10	mV
PROTECTIO	ON FEATURES					
		Temperature rising, CONFIG(TDIE_WARN_LEVEL) = 0		125		°C
	Thermal warning	Temperature rising, CONFIG(TDIE_WARN_LEVEL) = 1		105		
		Hysteresis		15		
	Thormal obutdown	Temperature rising		150		°C
	Thermal shutdown	Hysteresis		15		
\/A NI A	VANIA was damento was la alsa wi	Voltage falling	2.3	2.4	2.5	V
VANA _{UVLO}	VANA undervoltage lockout	Hysteresis		50		mV
LOAD CURF	RENT MEASUREMENT					
	Current measurement range	Maximum code		20.46		Α
	Resolution	LSB		20		mA
	Measurement accuracy	I _{OUT} ≥ 2 A		<10%		
CURRENT C	CONSUMPTION					
	Shutdown current consumption	V _(NRST) = 0 V		1		μΑ
	Standby current consumption, regulator disabled	V _(NRST) = 1.8 V		6		μΑ
	Active current consumption during PFM operation	V _(NRST) = 1.8 V, I _{OUT} = 0 mA, not switching		71		μΑ
	Active current consumption during PWM operation	V _(NRST) = 1.8 V, I _{OUT} = 0 mA		18		mA

Electrical Characteristics (continued)

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le T_{\text{J}} \le +125^{\circ}\text{C}$, specified $V_{(\text{VANA})}$, V_{IN} , $V_{(\text{NRST})}$, V_{OUT} and I_{OUT} range, unless otherwise noted. Typical values are at $T_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3$ MHz, $V_{(\text{VANA})} = V_{\text{IN}} = 3.7$ V and $V_{\text{OUT}} = 1$ V unless otherwise noted. $^{(1)(2)}$

noteu.						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DIGITAL	INPUT SIGNALS NRST, ENx, SCL	., SDA				
V_{IL}	Input low level				0.4	V
V_{IH}	Input high level		1.2			V
V _{HYS}	Hysteresis of Schmitt trigger inputs (SCL, SDA)		10	80	160	mV
	ENx pulldown resistance	ENx_PD = 1		500		kΩ
	NRST pulldown resistance	Always present	800	1200	1700	kΩ
DIGITAL	OUTPUT SIGNALS nINT, SDA				·	
V _{OL}	Output low level	I _{SOURCE} = 2 mA			0.4	V
R _P	External pullup resistor for nINT	To VIO Supply		10		kΩ
ALL DIGI	TAL INPUTS				•	
I _{LEAK}	Input current	All logic inputs over pin voltage range	-1		1	μΑ

7.6 I²C Serial Bus Timing Parameter

See⁽¹⁾ and Figure 1.

	<u> </u>		MIN	MAX	UNIT	
		Standard mode		100	kHz	
		Fast mode		400	kHz	
f_{SCL}	Serial clock frequency	Fast mode +		1	MHz	
		High-speed mode, C _b = 100 pF		3.4	MHz	
		High-speed mode, C _b = 400 pF		1.7	MHz	
		Standard mode	4.7			
	SCL low time	Fast mode	1.3		μs	
t_{LOW}		Fast mode +	0.5			
		High-speed mode, C _b = 100 pF	160	160		
		High-speed mode, C _b = 400 pF	320		ns	
		Standard mode	4			
	SCL high time	Fast mode	0.6		μs	
t _{HIGH}		Fast mode +	0.26			
		High-speed mode, C _b = 100 pF	60			
		High-speed mode, C _b = 400 pF	120		ns	
		Standard mode	250			
	Data active times	Fast mode	100			
t _{SU;DAT}	Data setup time	Fast mode +	50		ns	
		High-speed mode	10			
		Standard mode	0	3.45		
		Fast mode	0	0.9	μs	
t _{HD;DAT}	Data hold time	Fast mode +	0			
		High-speed mode, C _b = 100 pF	0	70		
		High-speed mode, $C_b = 400 \text{ pF}$ 0 150		ns		

⁽¹⁾ C_b refers to the capacitance of one bus line. C_b is expressed in pF units.

I²C Serial Bus Timing Parameter (continued)

See⁽¹⁾ and Figure 1.

			MIN MAX	UNIT	
		Standard mode	4.7		
	Setup time for a start or	Fast mode	0.6	μs	
tsu;sta	a repeated start condition	Fast mode +	0.26		
		High-speed mode	160	ns	
		Standard mode	4		
L	Hold time for a start or a	Fast mode	0.6	μs	
HD;STA	repeated start condition	Fast mode +	0.26		
		High-speed mode	160	ns	
	Bus free time between a stop and start condition	Standard mode	4.7		
BUF		Fast mode	1.3	μs	
		Fast mode +	0.5		
		Standard mode	4		
	Setup time for a stop	Fast mode	0.6	μs	
SU;STO	condition	Fast mode +	0.26		
		High-speed mode	160	ns	
		Standard mode	1000		
		Fast mode	300		
rDA	Rise time of SDA signal	Fast mode +	120	ns	
		High-speed mode, C _b = 100 pF	80		
		High-speed mode, C _b = 400 pF	160		
		Standard mode	250		
fDA		Fast mode	250		
	Fall time of SDA signal	Fast mode +	120	ns	
		High-speed mode, C _b = 100 pF	80		
		High-speed mode, C _b = 400 pF	160		
		Standard mode	1000		
		Fast mode	300		
rCL	Rise time of SCL signal	Fast mode +	120	ns	
		High-speed Mode, C _b = 100 pF	40		
		High-speed Mode, C _b = 400 pF	80		
		Standard mode	1000		
	Rise time of SCL signal	Fast mode	300		
rCL1	after a repeated start condition and after an	Fast mode +	120	ns	
	acknowledge bit	High-speed mode, C _b = 100 pF	80		
		High-speed mode, C _b = 400 pF	160		
		Standard mode	300		
		Fast mode	300		
fCL	Fall time of a SCL signal	Fast mode +	120	ns	
		High-speed mode, C _b = 100 pF	40		
		High-speed mode, C _b = 400 pF	80		
C _b	Capacitive load for each bus line (SCL and SDA)		400	pF	
	Pulse width of spike	Fast mode, fast mode +	50		
SP	suppressed in SCL and SDA lines (spikes that are less than the indicated width are suppressed)	d		ns	

7.7 Switching Characteristics

Limits apply over the junction temperature range $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le 125^{\circ}\text{C}$, specified $\text{V}_{(\text{VANA})}, \text{V}_{\text{IN}}, \text{V}_{(\text{NRST})}, \text{V}_{\text{OUT}}$ and I_{OUT} range, unless otherwise noted. Typical values are at $\text{T}_{\text{J}} = 25^{\circ}\text{C}$, $f_{\text{SW}} = 3 \text{ MHz}$, $\text{V}_{(\text{VANA})} = \text{V}_{\text{IN}} = 3.7 \text{ V}$ and $\text{V}_{\text{OUT}} = 1 \text{ V}$ unless otherwise noted. (1)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
$f_{\sf SW}$	Switching frequency, PWM mode		2.7	3	3.3	MHz	
	Maximum switching	V _{OUT} ≥ 0.6 V	2.7	3	3.3		
fsw-max	frequency, PWM mode Automatically limited to smaller of f_{SW} and f_{SW-MAX}	V _{OUT} < 0.6 V	1.8	2	2.2	MHz	
	Regulator start-up time (soft start)	From ENx to V_{OUT} = 0.225 V (slew-rate control begins), C_{OUT_TOTAL} = 88 μF , no load		90		μs	
		SLEW_RATEx[2:0] = 000, V _{OUT} ≥ 0.5 V	-15%	30	15%		
		SLEW_RATEx[2:0] = 001, V _{OUT} ≥ 0.5 V	-15%	15	15%		
		SLEW_RATEx[2:0] = 010, V _{OUT} ≥ 0.5 V	-15%	10	15%		
	Outrot valtage along sets (2)	SLEW_RATEx[2:0] = 011, V _{OUT} ≥ 0.5 V	-15%	7.5	15%	>//	
	Output voltage slew-rate (2)	SLEW_RATEx[2:0] = 100, V _{OUT} ≥ 0.5 V	-15%	3.8	15%	mV/µs	
		SLEW_RATEx[2:0] = 101, V _{OUT} ≥ 0.5 V	-15%	1.9	15%		
		SLEW_RATEx[2:0] = 110, V _{OUT} ≥ 0.5 V	-15%	0.94	15%		
		SLEW_RATEx[2:0] = 111, V _{OUT} ≥ 0.5 V	-15%	0.4	15%		
	Load current measurement	PFM mode (automatically changing to PWM mode for the measurement)		50		μs	
	time	PWM mode		4		-	

- (1) Minimum (MIN) and maximum (MAX) limits are specified by design, test, or statistical analysis. Typical (TYP) numbers are not verified, but do represent the most likely norm.
- (2) The slew-rate can be limited by the current limit (forward or negative current limit), output capacitance and load current.

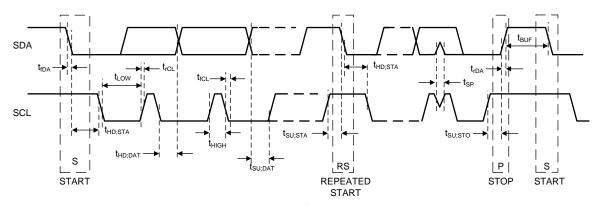


Figure 1. I²C Timing

TEXAS INSTRUMENTS

7.8 Typical Characteristics

Unless otherwise specified: $T_A = 25$ °C, $V_{IN} = 3.7$ V, $f_{SW} = 3$ MHz.

8 Detailed Description

8.1 Overview

The LP8758 is a high-efficiency, high-performance power supply device with four step-down DC-DC converter cores. The cores are configured for a single 4-phase configuration. The device delivers 0.5-V to 3.36-V regulated voltage rail from 2.5-V to 5.5-V battery or supply voltage to portable devices such as cell phones, tablets, and PDAs.

There are two modes of operation for the converter, depending on the output current required: pulse-width modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load currents of approximately 400 mA or higher. When operating in PWM mode the phases are automatically added/shedded based on the load current level. Lighter output current loads will cause the converter to automatically switch into PFM mode for reduced current consumption and a longer battery life when forced PWM mode is disabled. The forced multi-phase mode can be enabled for highest transient performance.

Additional features include soft-start, undervoltage lockout, overload protection, thermal warning, and thermal shutdown.

8.1.1 Buck Information

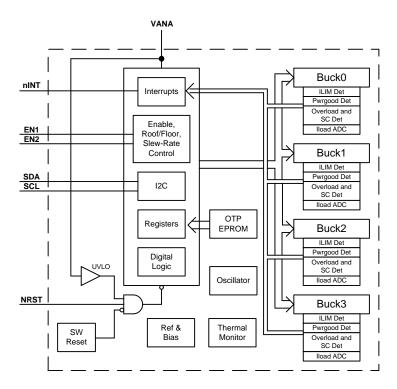
The LP8758 has four integrated high-efficiency buck converter cores. The cores are designed for flexibility; most of the functions are programmable, thus giving a possibility to optimize the regulator operation for each application.

8.1.1.1 Operating Modes

- OFF: Output is isolated from the input voltage rail in this mode. Output has an optional pulldown resistor.
- PWM: Converter operates in buck configuration with fixed switching frequency.
- PFM: Converter switches only when output voltage decreases below programmed threshold. Inductor current
 is discontinuous.

8.1.1.2 Features

- Output voltage
- Forced PWM operation
- Forced multi-phase operation (forces also the PWM operation)
- Switch current limit
- Output voltage slew rate
- Enable and disable delays

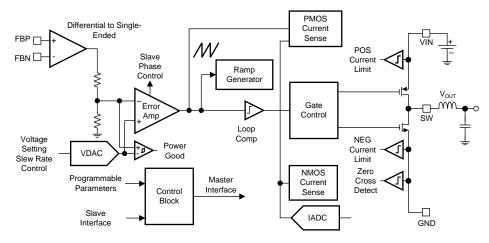

8.1.1.3 Programmability

The following parameters can be programmed via registers:

- DVS support with programmable slew-rate
- Automatic mode control based on the loading
- · Synchronous rectification
- Current mode loop with PI compensator
- Optional spread spectrum technique to reduce EMI
- Soft start
- Power good flag with maskable interrupt
- Phase control for optimized EMI
- Average output current sensing (for PFM entry, phase shedding/adding, and load current measurement)
- Current balancing between the phases of the converter
- Differential voltage sensing from point of the load
- Dynamic phase shedding/adding, each output being phase shifted

8.2 Functional Block Diagram

8.3 Feature Description


8.3.1 Multi-Phase DC-DC Converters

8.3.1.1 Overview

A multi-phase synchronous buck converter offers several advantages over a single power stage converter. For application processor power delivery, lower ripple on the input and output currents and faster transient response to load steps are the most significant advantages. Also, since the load current is evenly shared among multiple channels, the heat generated is greatly reduced for each channel due to the fact that power loss is proportional to square of current. Physical size of the output inductor shrinks significantly due to this heat reduction. A block diagram of a single core is shown in Figure 7.

Interleaving switching action of the converters and channels in a four-phase configuration is illustrated in Figure 8.

Copyright © 2017, Texas Instruments Incorporated

Figure 7. Detailed Block Diagram Showing One Core

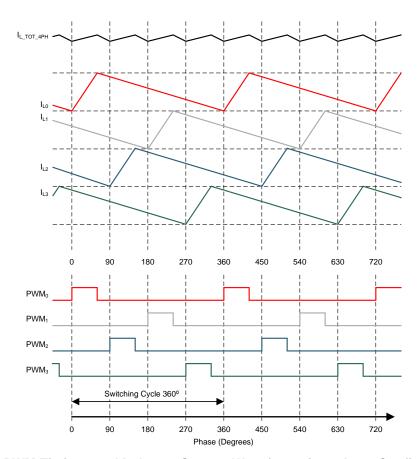


Figure 8. PWM Timings and Inductor Current Waveforms in 4-phase Configuration (1)

⁽¹⁾ Graph is not in scale and is for illustrative purposes only.

8.3.1.2 Multi-Phase Operation and Phase Adding/Shedding

Under heavy load conditions, the 4-phase converter switches each channel 90° apart. As a result, the 4-phase converter has an effective ripple frequency four times greater than the switching frequency of any one phase. However, the parallel operation decreases the efficiency at light load conditions. In order to overcome this operational inefficiency, the LP8758 can change the number of active phases to optimize efficiency for the variations of the load. This is called phase adding/shedding. The concept is illustrated below in Figure 9.

The converter can be forced to multi-phase operation by the BUCK0_CTRL1.BUCK0_FPWM_MP bit. If the regulator operates in forced multi-phase mode the forced PWM operation is automatically used. If the multi-phase operation is not forced, the number of phases are added and shedded automatically to follow the required output current.

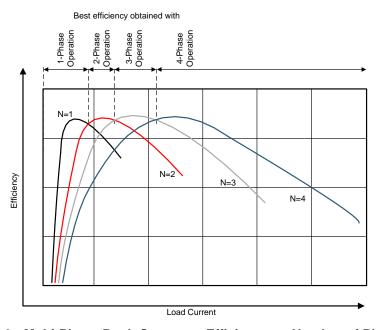


Figure 9. Multi-Phase Buck Converter Efficiency vs Number of Phases - All Converters in PWM Mode (2)

8.3.1.3 Transition Between PWM and PFM Modes

Normal PWM mode operation with phase-adding or phase-shedding optimizes efficiency at mid-to-full load at the expense of light-load efficiency. The LP8758 converter operates in PWM mode at load current of about 400 mA or higher. At lighter load current levels the device automatically switches into PFM mode for reduced current consumption when Forced PWM mode is disabled (AUTO mode operation). By combining the PFM and the PWM modes a high efficiency is achieved over a wide output-load current range.

8.3.1.4 Multi-Phase Switcher Configurations

In the multi-phase configuration the control of the multi-phase regulator settings is done using the control registers of the master buck. The following slave registers are ignored:

- BUCKx CTRL1
- BUCKx CTRL2, except ILIMx[2:0] bits
- interrupt bits related to the slave buck, except BUCKx ILIM INT

8.3.1.5 Buck Converter Load Current Measurement

Buck load current can be monitored via I²C registers. The monitored buck converter is selected with the SEL_I_LOAD_LOAD_CURRENT_BUCK_SELECT[1:0] register bits. A write to this selection register starts a current measurement sequence. The measurement sequence is typically 50 µs long. The LP8758 device can be configured to give out an interrupt INT_TOP.I_LOAD_READY after the load current measurement sequence is finished. Load current measurement interrupt can be masked with TOP_MASK.I_LOAD_READY_MASK bit. The measurement result can be read from registers I_LOAD_1 and I_LOAD_2. Register I_LOAD_1 bits BUCK_LOAD_CURRENT[7:0] give out the LSB bits and register I_LOAD_2 bits BUCK_LOAD_CURRENT[9:8] the MSB bits. The measurement result BUCK_LOAD_CURRENT[9:0] LSB is 20 mA, and maximum value of the measurement is 20.46 A. The measured current is the total value of the master and slave phases.

8.3.1.6 Spread-Spectrum Mode

Systems with periodic switching signals may generate a large amount of switching noise in a set of narrowband frequencies (the switching frequency and its harmonics). The usual solution to reduce noise coupling is to add EMI-filters and shields to the boards. The LP8758's register selectable spread-spectrum mode minimizes the need for output filters, ferrite beads, or chokes. In spread spectrum mode, the switching frequency varies randomly by ±5% (depending on selected switching frequency) about the center frequency, reducing the EMI emissions radiated by the converter and associated passive components and PCB traces (see Figure 10). This feature is enabled with the CONFIG.EN_SPREAD_SPEC bit, and it affects all the buck cores.

Where a fixed frequency converter exhibits large amounts of spectral energy at the switching frequency, the spread spectrum architecture of the LP8758 spreads that energy over a large bandwidth.

Figure 10. Spread-Spectrum Modulation

8.3.2 Power-Up

The power-up sequence for the LP8758 is as follows:

- VANA (and VIN_Bx) reach min recommended levels (V_(VANA) > VANA_{UVLO}).
- NRST is set to high level. This initiates power-on-reset (POR), OTP reading and enables the system I/O interface. The I²C host allows at least 1.2 ms before writing or reading data to the LP8758.
- Device enters STANDBY mode.
- The host can change the default register setting by I²C if needed.
- The regulator can be enabled/disabled by ENx pin(s) and by I²C interface.

8.3.3 Regulator Control

8.3.3.1 Enabling and Disabling Regulator

The regulator can be enabled when the device is in STANDBY state. There are two ways for enable and disable the regulator:

- Using BUCK0_CTRL1.EN_BUCK0 register bit (BUCK0_CTRL1.EN_PIN_CTRL0 register bit is '0').
- Using EN1/2 control pins (BUCK0_CTRL1.EN_BUCK0 register bit is '1' AND BUCK0 CTRL1.EN PIN CTRL0 register bit is '1').

If the EN1/2 control pins are used for enable and disable then the delay from the control signal rising edge to startup is set by BUCK0_DELAY.BUCK0_STARTUP_DELAY[3:0] bits and the delay from control signal falling edge to shutdown is set by BUCK0_DELAY.BUCK0_SHUTDOWN_DELAY[3:0] bits. The delays are valid only for EN1/2 signal and not for control with BUCK0_CTRL1.EN_BUCK0 bit. The delay time implemented by EN1/2 has overall +/-10% timing accuracy.

The control of the regulator (with 0 ms delays) is shown in Table 1. The multi-phase regulator is controlled with registers of the master phase.

CONTROL METHOD	ROW	EN_BUCKx0	BUCK0_CTRL1 EN_PIN_CTRL0	BUCK0_CTRL1 EN_PIN_SELECT0	BUCK0_CTRL1 EN_ROOF_FLOOR0	EN1 PIN	EN2 PIN	BUCK0 OUTPUT VOLTAGE
Enable/disable	1	0	Don't Care	Don't Care	Don't Care	Don't Care	Don't Care	Disabled
control with EN_BUCK0 bit	2	1	0	Don't Care	Don't Care	Don't Care	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Enable/disable	3	1	1	0	0	Low	Don't Care	Disabled
control with EN1 pin	4	1	1	0	0	High	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Enable/disable	5	1	1	1	0	Don't Care	Low	Disabled
control with EN2 pin	6	1	1	1	0	Don't Care	High	BUCK0_VOUT.BUCK0_VSET[7:0]
Roof/floor control with EN1	7	1	1	0	1	Low	Don't Care	BUCK0_FLOOR_VOUT.BUCK0_F LOOR_VSET[7:0]
pin	8	1	1	0	1	High	Don't Care	BUCK0_VOUT.BUCK0_VSET[7:0]
Roof/floor control with EN2	9	1	1	1	1	Don't Care	Low	BUCK0_FLOOR_VOUT.BUCK0_F LOOR_VSET[7:0]
pin	10	1	1	1	1	Don't Care	High	BUCK0_VOUT.BUCK0_VSET[7:0]

Table 1. Regulator Control

The following configuration allows the enable/disable control using ENx pin:

- BUCK0 CTRL1.EN BUCK0 = 1
- BUCK0 CTRL1.EN PIN CTRL0 = 1
- BUCK0 CTRL1.EN ROOF FLOOR0 = 0
- BUCKO VOUT.BUCKO VSET[7:0] = Required voltage when ENx is high
- The enable pin for control is selected with BUCK0 CTRL1.EN PIN SELECT0

When the ENx pin is low, Table 1 row 3 (or 5) is valid, and the regulator is disabled. By setting ENx pin high, Table 1 row 4 (or 6) is valid, and the regulator is enabled with required voltage.

If the regulator is enabled all the time, and the ENx pin controls selection between two voltage level, the following configuration is used:

- BUCK0 CTRL1.EN_BUCK0 = 1
- BUCK0 CTRL1.EN PIN CTRL0 = 1
- BUCK0_CTRL1.EN_ROOF_FLOOR0 = 1
- BUCK0 VOUT.BUCK0 VSET[7:0] = Required voltage when ENx is high
- The enable pin for control is selected with BUCK0 CTRL1.EN PIN SELECT0

When the ENx pin is low, Table 1 row 7(or 9) is valid, and the regulator is enabled with a voltage defined by BUCK0_FLOOR_VOUT.BUCK0_FLOOR_VSET[7:0] bits. Setting the ENx pin high, Table 1 row 8 (or 10) is valid, and the regulator is enabled with a voltage defined by BUCK0_VOUT.BUCK0_VSET[7:0] bits.

If the regulator is controlled by I²C writings, the BUCK0_CTRL1.EN_PIN_CTRL0 bit is set to 0. The enable/disable is controlled by the BUCK0_CTRL1.EN_BUCK0 bit, and when the regulator is enabled, the output voltage is defined by the BUCK0_VOUT.BUCK0_VSET[7:0] bits. The Table 1 rows 1 and 2 are valid for I²C controlled operation (ENx pins are ignored).

The regulator is enabled by the ENx pin or by I²C writing as shown in Figure 11. The soft-start circuit limits the inrush current during start-up. Output voltage increase rate is around 30 mV/μsec during soft-start. When the output voltage rises to approximately 0.3 V, the output voltage becomes slew-rate controlled. If there is a short circuit at the output, and the output voltage does not increase above a 0.35-V level in 1 ms, the regulator is disabled, and interrupt is set. When the output voltage reaches the powergood threshold level the INT_BUCK_0_1.BUCK0_PG_INT interrupt flag is set. The powergood interrupt flag can be masked using BUCK_0_1_MASK.BUCK0_PG_MASK bit.

The ENx input pins have integrated pull-down resistors. The pull-down resistors are enabled by default and host can disable those with CONFIG.ENx_PD bits.

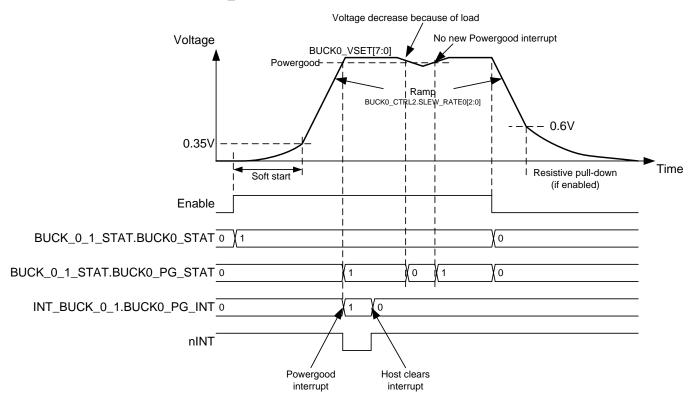


Figure 11. Regulator Enable and Disable

8.3.3.2 Changing Output Voltage

The regulator's output voltage can be changed by the ENx pin (voltage levels defined by the BUCK0_VOUT and BUCK0 FLOOR VOUT registers) or by writing to the BUCK0 VOUT and BUCK0 FLOOR VOUT registers. The change is always slew-rate controlled, and the slew-rate is defined BUCKx CTRL2.SLEW RATE[2:0] bits. During voltage change the Forced PWM mode is used automatically. If the multi-phase operation is forced by the BUCK0_CTRL1. BUCK0_FPWM MP bit, the regulator operates in multi-phase mode (four phases active). If the multi-phase operation is not forced, the number of phases are added and shedded automatically to follow the required slew rate. When the programmed output voltage is achieved, the mode becomes the one defined by load current, and the BUCKO CTRL1.BUCKO FPWM and BUCK0_CTRL1.BUCK0_FPWM_MP bits.

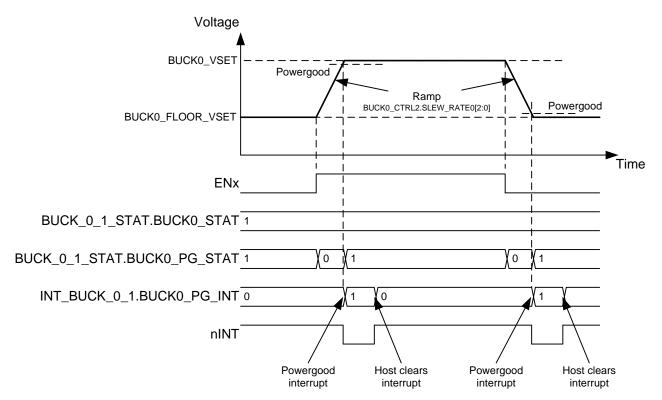


Figure 12. Regulator Output Voltage Change

8.3.4 Device Reset Scenarios

There are three reset methods implemented on the LP8758:

- Software reset with RESET.SW_RESET register bit
- · Reset from low logic level of NRST signal
- Undervoltage lockout (UVLO) reset from VANA supply

An SW reset occurs when RESET.SW_RESET bit is written '1'. The bit is automatically cleared after writing. This event disables the regulator immediately, resets all the register bits to the default values and OTP bits are loaded (see Figure 14). I²C interface is not reset during software reset.

If VANA supply voltage falls below UVLO threshold level or NRST signal is set low, then the regulator is disabled immediately, and all the register bits are reset to the default values. When the VANA supply voltage is above UVLO threshold level and NRST signal rises above threshold level an internal power-on reset (POR) occurs. OTP bits are loaded to the registers, and a start-up is initiated according to the register settings.

8.3.5 Diagnosis and Protection Features

The LP8758 is capable of providing three levels of protection features:

- · Warnings for diagnosis which sets interrupt;
- Protection events which are disabling the regulator; and
- Faults which are causing the device to shutdown.

When the device detects warning/protection condition(s), the LP8758 sets the flag bits indicating what protection or warning conditions have occurred, and the nINT pin will be pulled low. nINT will be released again after a clear of flags is complete. The nINT signal stays low until all the pending interrupts are cleared.

When a fault is detected, it is indicated by a INT_TOP.RESET_REG interrupt flag after next start-up.

Table 2. Summary of Interrupt Signals

EVENT	RESULT	INTERRUPT REGISTER AND BIT	INTERRUPT MASK	STATUS BIT	RECOVERY / INTERRUPT CLEAR
Current limit triggered (20 µs debounce)	No effect	INT_TOP.INT_BUCKx = 1 INT_BUCKx.BUCKx_ILIM_I NT = 1	BUCKx_MASK.BUCKx_ILI M_MASK	BUCKx_STAT.BUCKx_IL IM_STAT	Write 1 to INT_BUCKx.BUCKx_ILI M_INT bit Interrupt is not cleared if current limit is active
Short circuit (V _{OUT} < 0.35 V at 1 ms after enable) or Overload (V _{OUT} decreasing below 0.35V during operation, 1 ms debounce)	Regulator disable	INT_TOP.INT_BUCK0 = 1 INT_BUCK_0_1.BUCK0_SC _INT = 1	N/A	N/A	Write 1 to INT_BUCK_0_1.BUCK0_ SC_INT bit
Thermal Warning	No effect	INT_TOP.TDIE_WARN = 1	TOP_MASK.TDIE_WARN _MASK	TOP_STAT.TDIE_WARN _STAT	Write 1 to INT_TOP.TDIE_WARN bit Interrupt is not cleared if temperature is above thermal warning level
Thermal Shutdown	Regulator disabled	INT_TOP.TDIE_SD = 1	N/A	TOP_STAT.TDIE_SD_S TAT	Write 1 to INT_TOP.TDIE_SD bit Interrupt is not cleared if temperature is above thermal shutdown level
Powergood, output voltage reaches the programmed value	No effect	INT_TOP.INT_BUCK0 = 1 INT_BUCK_0_1.BUCK0_PG _INT = 1	BUCK_0_1_MASK.BUCK0 _PG_MASK	BUCK_0_1_STAT.BUCK 0_PG_STAT	Write 1 to INT_BUCK_0_1.BUCK0_ PG_INT bit
Load current measurement ready	No effect	INT_TOP.I_LOAD_READY = 1	TOP_MASK.I_LOAD_REA DY_MASK	N/A	Write 1 to INT_TOP.I_LOAD_REA DY bit
Start-up (NRST rising edge)	Device ready for operation, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit
Glitch on supply voltage and UVLO triggered (VANA falling and rising)	Immediate shutdown followed by powerup, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit
Software requested reset	Immediate shutdown followed by powerup, registers reset to default values	INT_TOP.RESET_REG = 1	TOP_MASK.RESET_REG _MASK	N/A	Write 1 to INT_TOP.RESET_REG bit

8.3.5.1 Warnings for Diagnosis (Interrupt)

8.3.5.1.1 Output Current Limit

The buck regulators have programmable output peak current limits. The limits are individually programmed for all buck regulators with BUCKx_CTRL2.ILIMx[2:0] bits. The current limit settings of master and slave regulators used for the same output voltage rail must be identical. If the load current is increased so that the current limit is triggered, the regulator continues to regulate to the limit current level (current peak regulation). The voltage may decrease if the load current is higher than limit current. If the current regulation continues for 20 µs, the LP8758 device sets the INT_BUCKx_BUCKx_ILIM_INT bit and pulls the nINT pin low. The host processor can read BUCKx_STAT.BUCKx_ILIM_STAT bits to see if the regulator is still in peak current regulation mode.

If the load is so high that the output voltage decreases below a 350-mV level, the LP8758 device disables the regulator and sets the INT_BUCK_0_1.BUCK_0_SC_INT bit. In addition the BUCK_0_1_STAT.BUCK_0_STAT bit is set to 0. The interrupt is cleared when the host processor writes 1 to INT_BUCK_0_1.BUCK_0_SC_INT bit. The overload situation is shown in Figure 13.

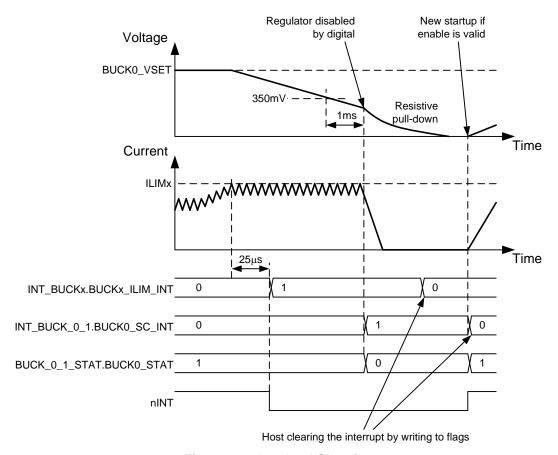


Figure 13. Overload Situation

8.3.5.1.2 Thermal Warning

The LP8758 device includes protection feature against over-temperature by setting an interrupt for host processor. The threshold level of the thermal warning is selected with CONFIG.TDIE_WARN_LEVEL bit.

If the LP8758 device temperature increases above thermal warning level the device sets INT_TOP.TDIE_WARN bit and pulls nINT pin low. The status of the thermal warning can be read from TOP_STAT.TDIE_WARN_STAT bit and the interrupt is cleared by writing 1 to INT_TOP.TDIE_WARN bit.

8.3.5.2 Protection (Regulator Disable)

If the regulator is disabled because of protection or fault (short-circuit protection, overload protection, thermal shutdown, or undervoltage lockout), the output power FETs are set to high-impedance mode, and the output pull-down resistor is enabled (if enabled with BUCKx_CTRL1.EN_RDISx bits). The turn-off time of the output voltage is defined by the output capacitance, load current, and the resistance of the integrated pulldown resistor.

8.3.5.2.1 Short-Circuit and Overload Protection

A short-circuit protection feature allows the LP8758 to protect itself and external components against short circuit at the output or against overload during start-up. The fault threshold is 350 mV, and the protection is triggered, and the regulator disabled, if the output voltage is below the threshold level 1 ms after the regulator is enabled.

In a similar way the overload situation is protected during normal operation. If the regulator's feedback-pin voltage falls below 0.35 V, and remains below the threshold level for 1 ms, the regulator is disabled.

In the short-circuit and overload situations the INT_BUCK_0_1.BUCK0_SC_INT and the INT_TOP.INT_BUCK0 bits are set to 1, the BUCK_0_1_STAT.BUCK0_STAT bit is set to 0 and the nINT signal is pulled low. The host processor clears the interrupt by writing 1 to the INT_BUCK_0_1.BUCK0_SC_INT bit. Upon clearing the interrupt the regulator makes a new start-up attempt if the enable register bits and/or ENx control signal is valid.

8.3.5.2.2 Thermal Shutdown

The LP8758 has an overtemperature protection function that operates to protect itself from short-term misuse and overload conditions. When the junction temperature exceeds around 150°C, the regulator is disabled, the INT_TOP.TDIE_SD bit is set to 1, the nINT signal is pulled low, and the device enters STANDBY. nINT will be cleared by writing 1 to the INT_TOP.TDIE_SD bit. If the temperature is above thermal shutdown level the interrupt is not cleared. The host can read the status of the thermal shutdown from the TOP_STAT.TDIE_SD_STAT bit. Regulator cannot be enabled as long as the junction temperature is above thermal shutdown level or the thermal shutdown interrupt is pending.

8.3.5.3 Fault (Power Down)

8.3.5.3.1 Undervoltage Lockout

When the input voltage falls below VANA_{UVLO} at the VANA pin, the buck converters are disabled immediately, and the output capacitor is discharged using the pulldown resistor and the LP8758 device enters SHUTDOWN. When VANA voltage is above UVLO threshold level and NRST signal is high, the device powers up to STANDBY state.

If the reset interrupt is unmasked by default (TOP_MASK.RESET_REG_MASK = 0) the INT_TOP.RESET_REG interrupt indicates that the device has been in SHUTDOWN. The host processor must clear the interrupt by writing 1 to the INT_TOP.RESET_REG bit. If the host processor reads the INT_TOP.RESET_REG flag after detecting an nINT low signal, it knows that the input supply voltage has been below UVLO level (or the host has requested reset), and the registers are reset to default values.

8.3.6 Digital Signal Filtering

The digital signals have a debounce filtering. The signal/supply is sampled with a clock signal and a counter. This results as an accuracy of one clock period for the debounce window.

	<u>~</u>			
EVENT	SIGNAL / SUPPLY	RISING EDGE LENGTH	FALLING EDGE LENGTH	
Enable/Disable/Voltage Select for BUCK0	EN1	3μs ⁽¹⁾	3μs ⁽¹⁾	
Enable/Disable/Voltage Select for BUCK0	EN2	3μs ⁽¹⁾	3μs ⁽¹⁾	
VANA undervoltage lockout	VANA	Immediate	Immediate	
Thermal warning	TDIE_WARN	20 μs	20 μs	
Thermal shutdown	TDIE_SD	20 μs	20 μs	
Current limit	VOUTx_ILIM	20 μs	20 μs	
Overload	FB_B0 - FB_B1, FB_B2 - FB_F3	1 ms	1 ms	
Powergood	FB_B0 - FB_B1, FB_B2 - FB_F3	20 μs	20 μs	

Table 3. Digital Signal Filtering

⁽¹⁾ No glitch filtering, only synchronization.

8.4 Device Functional Modes

8.4.1 Modes of Operation

SHUTDOWN: The $V_{(NRST)}$ voltage is below threshold level. All switch, reference, control and bias circuitry of the LP8758 device are turned off.

WAIT-ON: The V_(NRST) voltage is above threshold level. The reference and bias circuitry are enabled. The regulator of the LP8758 device is turned off.

READ OTP: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. The regulator is disabled and the reference and bias circuitry of the LP8758 are enabled. The OTP bits are loaded to registers.

STANDBY: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. The regulator is disabled and the reference, control and bias circuitry of the LP8758 are enabled. All registers can be read or written by the host processor via the system serial interface. The regulator can be enabled if needed.

ACTIVE: The main supply voltage $V_{(VANA)}$ is above VANA_{UVLO} level and $V_{(NRST)}$ voltage is above threshold level. At least one regulated DC-DC converter is enabled. All registers can be read or written by the host processor via the system serial interface.

The operating modes and transitions between the modes are shown in Figure 14.

Device Functional Modes (continued)

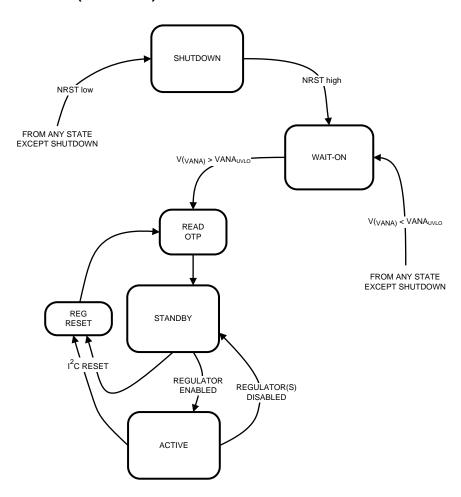


Figure 14. Device Operation Modes

8.5 Programming

8.5.1 I²C-Compatible Interface

The I²C-compatible synchronous serial interface provides access to the programmable functions and registers on the device. This protocol uses a two-wire interface for bidirectional communications between the devices connected to the bus. The two interface lines are the Serial Data Line (SDA), and the Serial Clock Line (SCL). Every device on the bus is assigned a unique address and acts as either a Master or a Slave depending on whether it generates or receives the serial clock SCL. The SCL and SDA lines should each have a pullup resistor placed somewhere on the line and remain HIGH even when the bus is idle. The LP8758 supports standard mode (100 kHz), fast mode (400 kHz), fast mode plus (1 MHz), and high-speed mode (3.4 MHz).

8.5.1.1 Data Validity

The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the state of the data line can only be changed when clock signal is LOW.

Programming (continued)

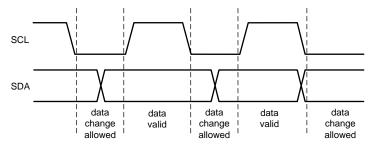


Figure 15. Data Validity Diagram

8.5.1.2 Start and Stop Conditions

The LP8758 is controlled via an I²C-compatible interface. START and STOP conditions classify the beginning and end of the I²C session. A START condition is defined as SDA transitions from HIGH to LOW while SCL is HIGH. A STOP condition is defined as SDA transition from LOW to HIGH while SCL is HIGH. The I²C master always generates the START and STOP conditions.

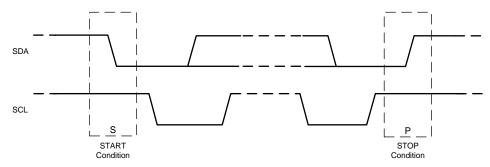


Figure 16. Start and Stop Sequences

The I^2C bus is considered busy after a START condition and free after a STOP condition. During data transmission the I^2C master can generate repeated START conditions. A START and a repeated START condition are equivalent function-wise. The data on SDA must be stable during the HIGH period of the clock signal (SCL). In other words, the state of SDA can only be changed when SCL is LOW. Figure 17 shows the SDA and SCL signal timing for the I^2C -Compatible Bus. See the I^2C Serial Bus Timing Parameter for timing values.

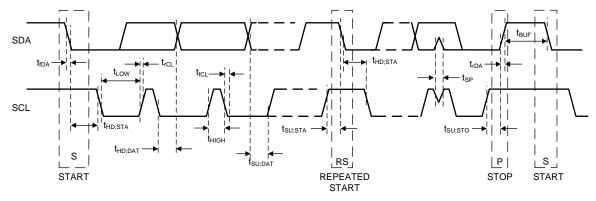


Figure 17. I²C-Compatible Timing

Programming (continued)

8.5.1.3 Transferring Data

Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first. Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LP8758 pulls down the SDA line during the 9th clock pulse, signifying an acknowledge. The LP8758 generates an acknowledge after each byte has been received.

There is one exception to the "acknowledge after every byte" rule. When the master is the receiver, it must indicate to the transmitter an end of data by not-acknowledging ("negative acknowledge") the last byte clocked out of the slave. This "negative acknowledge" still includes the acknowledge clock pulse (generated by the master), but the SDA line is not pulled down.

NOTE

If the NRST signal is low during I²C communication the LP8758 device does not drive SDA line. The ACK signal and data transfer to the master is disabled at that time.

After the START condition, the bus master sends a chip address. This address is seven bits long followed by an eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a "0" indicates a WRITE and a "1" indicates a READ. The second byte selects the register to which the data will be written. The third byte contains data to write to the selected register.

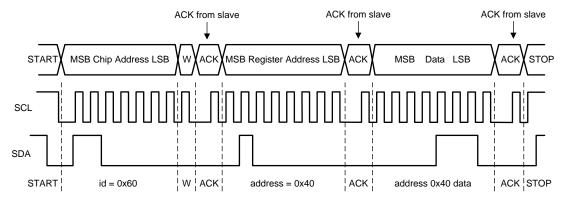
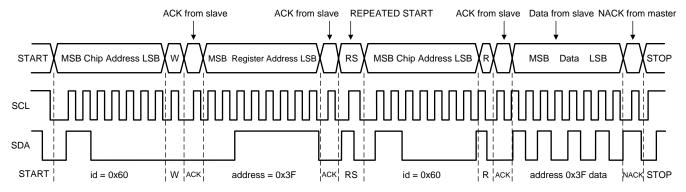
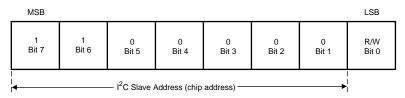



Figure 18. Write Cycle (w = write; SDA = '0'), id = Device Address = 60Hex for LP8758

When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.


Figure 19. Read Cycle (r = read; SDA = '1'), id = Device Address = 60Hex for LP8758

Programming (continued)

8.5.1.4 PC-Compatible Chip Address

The device address for the LP8758 is 0x60. After the START condition, the I^2C master sends the 7-bit address followed by an eighth bit, read or write (R/W). R/W = 0 indicates a WRITE and R/W = 1 indicates a READ. The second byte following the device address selects the register address to which the data will be written. The third byte contains the data for the selected register.

Here device address is 110 0000Bin = 60Hex.

Figure 20. Device Address

8.5.1.5 Auto Increment Feature

The auto-increment feature allows writing several consecutive registers within one transmission. Every time an 8-bit word is sent to the LP8758, the internal address index counter will be incremented by one and the next register will be written. Table 4 below shows writing sequence to two consecutive registers. Note that the auto-increment feature does not work for read.

Table 4. Auto-Increment Example

Master Action	Start	Device Address = 60H	Write		Register Address		Data		Data		Stop
LP8758 Action				ACK		ACK		ACK		ACK	

8.6 Register Maps

8.6.1 Register Descriptions

The LP8758 is controlled by a set of registers through the system serial interface port. The device registers, their addresses and their abbreviations are listed in Table 5. A more detailed description is given in sections DEV_REV to I_LOAD_1.

Table 5. Summary of LP8758 Control Registers

Addr	Register	Read / Write	D7	D6	D5	D4	D3	D2	D1	D0
0x01	OTP_REV	R				OTP_	ID[7:0]			•
0x02	BUCK0_ CTRL1	R/W	EN_BUCK0	EN_PIN_ CTRL0	EN_PIN_ SELECTO	EN_ROOF _FLOOR0	EN_RDIS0	Reserved	BUCK0_ FPWM	BUCK0 _FPWM _MP
0x03	BUCK0_ CTRL2	R/W	Rese	Reserved ILIM0[2:0] SLE					LEW_RATE0[2	:0]
0x05	BUCK1_ CTRL2	R/W	Rese	Reserved ILIM1[2:0]					Reserved	
0x07	BUCK2_ CTRL2	R/W	Rese	erved		ILIM2[2:0]			Reserved	
0x09	BUCK3_ CTRL2	R/W	Rese	erved		ILIM3[2:0]			Reserved	
0x0A	BUCK0_ VOUT	R/W				BUCK0_	VSET[7:0]			
0x0B	BUCK0_ FLOOR_ VOUT	R/W				BUCK0_FLO	OR_VSET[7:0]			
0x12	BUCK0_ DELAY	R/W	BU	ICK0_SHUTD(]YAJBD_NWC	3:0]	Е	BUCK0_START	UP_DELAY[3:0	0]
0x16	RESET	R/W		Reserved						SW_ RESET
0x17	CONFIG	R/W		Reserved			TDIE _WARN _LEVEL	EN2_PD	EN1_PD	EN_ SPREAD _SPEC
0x18	INT_TOP	R/W	INT_ BUCK3	INT_ BUCK2	INT_ BUCK1	INT_ BUCK0	TDIE_SD	TDIE_ WARN	RESET_ REG	I_LOAD_ READY
0x19	INT_BUCK_ 0_1	R/W		Reserved		BUCK1_ ILIM_INT	Reserved	BUCK0_ PG_INT	BUCK0_ SC_INT	BUCK0_ ILIM_INT
0x1A	INT_BUCK_ 2_3	R/W		Reserved		BUCK3_ ILIM_INT		Reserved	BUCK2_ ILIM_INT	
0x1B	TOP_ STAT	R		Rese	erved		TDIE_SD _STAT	TDIE_ WARN_ STAT	Rese	erved
0x1C	BUCK_0_1_ STAT	R		Reserved		BUCK1_ ILIM_ STAT	BUCK0_ STAT	BUCK0_ PG_STAT	Reserved	BUCK0_ ILIM_ STAT
0x1D	BUCK_2_3_ STAT	R		Reserved		BUCK3_ ILIM_STAT		Reserved		BUCK2_ ILIM_STAT
0x1E	TOP_ MASK	R/W			Reserved			TDIE_WAR N_MASK	RESET_ REG_MASK	I_LOAD_ READY_ MASK
0x1F	BUCK_0_1_ MASK	R/W		Reserved		BUCK1_ ILIM_ MASK	Reserved	BUCK0_ PG_MASK	Reserved	BUCK0_ ILIM_ MASK
0x20	BUCK_2_3_ MASK	R/W		BUCK3_ ILIM_ Reserved MASK					BUCK2_ ILIM_ MASK	
0x21	SEL_I_ LOAD	R/W			Res	erved			LOAD_CU BUCK_SE	JRRENT_ :LECT[1:0]
0x22	I_LOAD_2	R/W			Res	erved			BUCK_LOAD 9:	CURRENT[8]
0x23	I_LOAD_1	R/W		BUCK_LOAD_CURRENT[7:0]						

8.6.1.1 DEV_REV

Address: 0x00

D7	D6	D5	D4	D3	D2	D1	D0
DEVICI		ALL_LA\	/ER[1:0]		METAL_L	AYER[3:0]	

Bits	Field	Туре	Default	Description
7:6	DEVICE_ID[1:0]	R	00	Device specific ID code.
5:4	ALL_LAYER[1:0]	R	00	Shows the all layer version of the device: 00 - First all layer version 01 - Second all layer version 10 - Third all layer version 11 - Fourth all layer version
3:0	METAL_LAYER [3:0]	R	0001	Shows the metal layer version of the device: 0000 - All layer version 0001 - First metal layer spin 1111 - 15 th metal layer spin

8.6.1.2 OTP_REV

Address: 0x01

D7	D6	D5	D4	D3	D2	D1	D0
			OTP_	ID[7:0]			

Bits	Field	Туре	Default	Description
7:0	OTP_ID[7:0]	R	1011 0000	Identification Code of the OTP EPROM Version.

8.6.1.3 BUCK0_CTRL1

Address: 0x02

D7	D6	D5	D4	D3	D2	D1	D0
EN_BUCK0	EN_PIN_	EN_PIN_	EN_ROOF_	EN_RDIS0	Reserved	BUCK0_FPWM	
	CTRL0	SELECTO	FLOOR0				MP

Bits	Field	Type	Default	Description			
7	EN_BUCK0	R/W	1	Enable BUCK0 regulator: 0 - BUCK0 regulator is disabled 1 - BUCK0 regulator is enabled.			
6	EN_PIN_CTRL0	R/W	1	Enable EN1/2 pin control for BUCK0: 0 - only EN_BUCK0 bit controls BUCK0 1 - EN_BUCK0 bit AND EN1/2 pin control BUCK0.			
5	EN_PIN_SELECT0	R/W	0	Select which ENx pin controls BUCK0 if EN_PIN_CTRL0 = 1: 0 - EN1 pin 1 - EN2 pin.			
4	EN_ROOF_ FLOOR0	R/W	0	Enable Roof/Floor control of EN1/2 pin if EN_PIN_CTRL0 = 1: 0 - Enable/Disable (1/0) control 1 - Roof/Floor (1/0) control.			
3	EN_RDIS0	R/W	1	Enable output discharge resistor when BUCK0 is disabled: 0 - Discharge resistor disabled 1 - Discharge resistor enabled.			
2	Reserved	R/W	0				
1	BUCK0_FPWM	R/W	0	Forces the BUCK0 regulator to operate in PWM mode: 0 - Automatic transitions between PFM and PWM modes (AUTO mode). 1 - Forced to PWM operation.			
0	BUCK0_FPWM _MP	R/W	0	Forces the BUCK0 regulator to operate always in multi-phase and forced PWM operation mode: 0 - Automatic phase adding and shedding. 1 - Forced to multi-phase operation, 2 phases in the 2-phase configuration, 3 phases in the 3-phase configuration and 4 phases in the 4-phase configuration.			

8.6.1.4 BUCK0_CTRL2

Address: 0x03

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		ILIM0[2:0]			SLEW_RATE0[2:0]]

Bits	Field	Type	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM0[2:0]	R/W	111	Sets the switch current limit of BUCKO. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	SLEW_RATE0[2:0]	R/W	010	Sets the output voltage slew rate for BUCK0 regulator (rising and falling edges): 000 - 30 mV/µs 001 - 15 mV/µs 010 - 10 mV/µs (Default) 011 - 7.5 mV/µs 100 - 3.8 mV/µs 100 - 3.8 mV/µs 101 - 1.9 mV/µs 110 - 0.94 mV/µs 111 - 0.4 mV/µs

8.6.1.5 BUCK1_CTRL2

Address: 0x05

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		ILIM1[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM1[2:0]	R/W	111	Sets the switch current limit of BUCK1. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.6 BUCK2_CTRL2

Address: 0x07

D7 D6	D5	D4	D3	D2	D1	D0
Reserved		ILIM2[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM2[2:0]	R/W	111	Sets the switch current limit of BUCK2. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.7 BUCK3_CTRL2

Address: 0x09

D7	D6	D5	D4	D3	D2	D1	D0
Rese	erved		ILIM3[2:0]			Reserved	

Bits	Field	Туре	Default	Description
7:6	Reserved	R/W	00	
5:3	ILIM3[2:0]	R/W	111	Sets the switch current limit of BUCK3. Can be programmed at any time during operation: 000 - 1.5 A 001 - 2.0 A 010 - 2.5 A 011 - 3.0 A 100 - 3.5 A 101 - 4.0 A 110 - 4.5 A 111 - 5.0 A (Default)
2:0	Reserved	R/W	010	

8.6.1.8 BUCK0_VOUT

Address: 0x0A

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK0_	VSET[7:0]			

Bits	Field	Туре	Default	Description
7:0	BUCK0_VSET[7:0]	R/W	0110 0001	Sets the output voltage of BUCK0 regulator 0.5 V - 0.73 V, 10 mV steps 0000 0000 - 0.5V 0001 0111 - 0.73 V 0.73 V - 1.4 V, 5 mV steps 0001 1000 - 0.735 V 1001 1101 - 1.4 V 1.4 V - 3.36 V, 20 mV steps 1001 1110 - 1.42 V 1111 1111 - 3.36 V

8.6.1.9 BUCKO_FLOOR_VOUT

Address: 0x0B

D7	D6	D5	D4	D3	D2	D1	D0		
	BUCK0_FLOOR								

Bits	Field	Туре	Default	Description
7:0	BUCK0_FLOOR _VSET[7:0]	R/W	0000 0000	Sets the output voltage of BUCK0 regulator when Floor state is used 0.5 V - 0.73 V, 10 mV steps 0000 0000 - 0.5V 0001 0111 - 0.73 V
				0.73 V - 1.4 V, 5 mV steps 0001 1000 - 0.735 V
				 1001 1101 - 1.4 V 1.4 V - 3.36 V, 20 mV steps 1001 1110 - 1.42 V
				 1111 1111 - 3.36 V

8.6.1.10 BUCKO_DELAY

Address: 0x12

D7	D6	D5	D4	D3	D2	D1	D0
	BUCK0_SHUTDO	DWN_DELAY[3:0]			BUCK0_START	UP_DELAY[3:0]	

Bits	Field	Туре	Default	Description	
7:4	BUCK0_ SHUTDOWN_ DELAY[3:0]	R/W	0000	Shutdown delay of BUCK0 from falling edge of ENx signal: 0000 - 0 ms 0001 - 1 ms 1111 - 15 ms	
3:0	BUCK0_ STARTUP_ DELAY[3:0]	R/W	0000	Start-up delay of BUCK0 from rising edge of ENx signal: 0000 - 0 ms 0001 - 1 ms 1111 - 15 ms	

8.6.1.11 RESET

Address: 0x16

D7	D6	D5	D4	D3	D2	D1	D0
			Reserved				SW RESET

Bits	Field	Type	Default	Description		
7:1	Reserved	R/W	000 0000			
0	SW_RESET	R/W	0	Software commanded reset. When written to 1, the registers will be reset to default values, OTP memory is read, and the I ² C interface is reset. The bit is automatically cleared.		

8.6.1.12 CONFIG

Address: 0x17

D7	D6	D5	D4	D3	D2	D1	D0	
	Rese	erved		TDIE_WARN_ LEVEL	EN2_PD	EN1_PD	EN_SPREAD _SPEC	

Bits	Field	Туре	Default	Description
7:4	Reserved	R/W	0000	
3	TDIE_WARN_ LEVEL	R/W	0	Thermal warning threshold level. 0 - 125°C 1 - 105°C.
2	EN2_PD	R/W	1	Selects the pull down resistor on the EN2 input pin. 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
1	EN1_PD	R/W	1	Selects the pull down resistor on the EN1 input pin. 0 - Pull-down resistor is disabled. 1 - Pull-down resistor is enabled.
0	EN_SPREAD _SPEC	R/W	0	Enable spread spectrum feature: 0 - Disabled 1 - Enabled

8.6.1.13 INT_TOP

Address: 0x18

D7	D6	D5	D4	D3	D2	D1	D0
INT_BUCK3	INT_BUCK2	INT_BUCK1	INT_BUCK0	TDIE_SD	TDIE_WARN	RESET_REG	I_LOAD_ READY

Bits	Field	Туре	Default	Description			
7	INT_BUCK3	R	0	Interrupt indicating that output BUCK3 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK3 register. This bit is cleared automatically when INT_BUCK3 register is cleared to 0x00.			
6	INT_BUCK2	R	0	Interrupt indicating that output BUCK2 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK2 register. This bit is cleared automatically when INT_BUCK2 register is cleared to 0x00.			
5	INT_BUCK1	R	0	Interrupt indicating that output BUCK1 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK1 register. This bit is cleared automatically when INT_BUCK1 register is cleared to 0x00.			
4	INT_BUCK0	R	0	Interrupt indicating that output BUCK0 has a pending interrupt. The reason for the interrupt is indicated in INT_BUCK0 register. This bit is cleared automatically when INT_BUCK0 register is cleared to 0x00.			
3	TDIE_SD	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal shutdown level. The regulator has been disabled if it was enabled. The regulator cannot be enabled if this bit is active. The actual status of the thermal warning is indicated by TOP_STAT.TDIE_SD_STAT bit. Write 1 to clear interrupt.			

Bits	Field	Туре	Default	Description
2	TDIE_WARN	R/W	0	Latched status bit indicating that the die junction temperature has exceeded the thermal warning level. The actual status of the thermal warning is indicated by TOP_STAT.TDIE_WARN_STAT bit. Write 1 to clear interrupt.
1	RESET_REG	R/W	0	Latched status bit indicating that either startup (NRST rising edge) has done, VANA supply voltage has been below undervoltage threshold level or the host has requested a reset (RESET.SW_RESET). The regulator has been disabled, and registers are reset to default values and the normal startup procedure is done. Write 1 to clear interrupt.
0	I_LOAD_READY	R/W	0	Latched status bit indicating that the load current measurement result is available in I_LOAD_1 and I_LOAD_2 registers. Write 1 to clear interrupt.

8.6.1.14 INT_BUCK_0_1

Address: 0x19

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK1_ILIM	Reserved	BUCK0_PG	BUCK0_SC	BUCK0_ILIM
			_INT		_INT	_INT	_INT

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK1_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.
3	Reserved	R/W	0	
2	BUCK0_PG_INT	R/W	0	Latched status bit indicating that BUCK0 output voltage has reached powergood threshold level. Write 1 to clear.
1	BUCK0_SC_INT	R/W	0	Latched status bit indicating that the BUCK0 output voltage has fallen below 0.35V level during operation or BUCK0 output didn't reach 0.35 V level in 1 ms from enable. Write 1 to clear.
0	BUCK0_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.

8.6.1.15 INT_BUCK_2_3

Address: 0x1A

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK3_ILIM		Reserved		BUCK2_ILIM
			INT				INT

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK3_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.
3:1	Reserved	R/W	000	
0	BUCK2_ILIM_INT	R/W	0	Latched status bit indicating that output current limit has been active. Write 1 to clear.

8.6.1.16 TOP_STAT

Address: 0x1B

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved				TDIE_WARN _STAT	Res	erved

Bits	Field	Туре	Default	Description
7:4	Reserved	R	0000	
3	TDIE_SD_STAT	R	0	Status bit indicating the status of thermal shutdown: 0 - Die temperature below thermal shutdown level 1 - Die temperature above thermal shutdown level.
2	TDIE_WARN _STAT	R	0	Status bit indicating the status of thermal warning: 0 - Die temperature below thermal warning level 1 - Die temperature above thermal warning level.
1:0	Reserved	R	00	

8.6.1.17 BUCK_0_1_STAT

Address: 0x1C

D7	D6	D5	D4	D3	D2	D1	D0
F	Reserved		BUCK1_ILIM	BUCK0_STAT	BUCK0_PG	Reserved	BUCK0_ILIM
			_STAT		_STAT		_STAT

Bits	Field	Туре	Default	Description	
7:5	Reserved	R	000		
4	BUCK1_ILIM _STAT	R	0	Status bit indicating BUCK1 current limit status (raw status) 0 - BUCK1 output current is below current limit level 1 - BUCK1 output current limit is active.	
3	BUCK0_STAT	R	0	Status bit indicating the enable/disable status of BUCK0: 0 - BUCK0 regulator is disabled 1 - BUCK0 regulator is enabled.	
2	BUCK0_PG_STAT	R	0	Status bit indicating BUCK0 output voltage validity (raw status) 0 - BUCK0 output is above powergood threshold level 1 - BUCK0 output is below powergood threshold level.	
1	Reserved	R	0		
0	BUCK0_ILIM _STAT	R	0	Status bit indicating BUCK0 current limit status (raw status) 0 - BUCK0 output current is below current limit level 1 - BUCK0 output current limit is active.	

8.6.1.18 BUCK_2_3_STAT

Address: 0x1D

 D7	D6	D5	D4	D3	D2	D1	D0
Reserved			BUCK3_ILIM		Reserved		BUCK2_ILIM
			_STAT				_STAT

Bits	Field	Туре	Default	Description
7:5	Reserved	R	000	
4	BUCK3_ILIM _STAT	R	0	Status bit indicating BUCK3 current limit status (raw status) 0 - BUCK3 output current is below current limit level 1 - BUCK3 output current limit is active.
3:1	Reserved	R	000	
0	BUCK2_ILIM _STAT	R	0	Status bit indicating BUCK2 current limit status (raw status) 0 - BUCK2 output current is below current limit level 1 - BUCK2 output current limit is active.

8.6.1.19 TOP_MASK

Address: 0x1E

D7	D6	D5	D4	D3	D2	D1	D0
		Reserved			TDIE_WARN	RESET_REG	I_LOAD_
					_MASK	_MASK	READY MASK

Bits	Field	Туре	Default	Description
7:3	Reserved	R/W	0 0000	
2	TDIE_WARN _MASK	R/W	0	Masking for thermal warning interrupt INT_TOP.TDIE_WARN: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect TOP_STAT.TDIE_WARN_STAT status bit.
1	RESET_REG _MASK	R/W	1	Masking for register reset interrupt INT_TOP.RESET_REG: 0 - Interrupt generated 1 - Interrupt not generated.
0	I_LOAD_ READY_MASK	R/W	0	Masking for load current measurement ready interrupt INT_TOP.I_LOAD_READY. 0 - Interrupt generated 1 - Interrupt not generated.

8.6.1.20 BUCK_0_1_MASK

Address: 0x1F

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK1_ILIM _MASK	Reserved	BUCK0_PG _MASK	Reserved	BUCK0_ILIM _MASK

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK1_ILIM _MASK	R/W	1	Masking for BUCK1 current limit detection interrupt INT_BUCK_0_1.BUCK1_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.
3	Reserved	R/W	0	
2	BUCK0_PG_MASK	R/W	0	Masking for BUCK0 power good interrupt INT_BUCK_0_1.BUCK0_PG_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_PG_STAT status bit.
1	Reserved	R	0	
0	BUCK0_ILIM _MASK	R/W	0	Masking for BUCK0 current limit detection interrupt INT_BUCK_0_1.BUCK0_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_0_1_STAT.BUCK1_ILIM_STAT status bit.

8.6.1.21 BUCK_2_3_MASK

Address: 0x20

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved		BUCK3_ILIM _MASK		Reserved		BUCK2_ILIM _MASK

Bits	Field	Туре	Default	Description
7:5	Reserved	R/W	000	
4	BUCK3_ILIM _MASK	R/W	1	Masking for BUCK3 current limit detection interrupt INT_BUCK_2_3.BUCK3_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_2_3_STAT.BUCK3_ILIM_STAT status bit.
3:1	Reserved	R/W	000	
0	BUCK2_ILIM _MASK	R/W	1	Masking for BUCK2 current limit detection interrupt INT_BUCK_2_3.BUCK2_ILIM_INT: 0 - Interrupt generated 1 - Interrupt not generated. This bit does not affect BUCK_2_3_STAT.BUCK1_ILIM_STAT status bit.

8.6.1.22 SEL_I_LOAD

Address: 0x21

D7	D6	D5	D4	D3	D2	D1	D0
	Reserved						RENT_BUCK
						_SELE	CT[1:0]

Bits	Field	Туре	Default	Description
7:2	Reserved	R/W	00 0000	
1:0	LOAD_CURRENT_ BUCK_SELECT [1:0]	R/W	00	Start the current measurement on the selected regulator: 00 - BUCK0 01 - BUCK1 10 - BUCK2 11 - BUCK3 The measurement is started when register is written. If the selected buck is master, the measurement result is a sum current of master and slave bucks. If the selected buck is slave, the measurement result is a current of the selected slave bucks.

8.6.1.23 I_LOAD_2

Address: 0x22

D7	D6	D5	D4	D3	D2	D1	D0
		Rese	erved			BUCK LOAD	CURRENT[9:8]

Bits	Field	Туре	Default	Description
7:2	Reserved	R	00 0000	
1:0	BUCK_LOAD_ CURRENT[9:8]	R	00	This register describes 3 MSB bits of the average load current on selected regulator with a resolution of 20 mA per LSB and max 20 A current.

8.6.1.24 I_LOAD_1

Address: 0x23

D7	D6	D5	D4	D3	D2	D1	D0
			BUCK_LOAD_	CURRENT[7:0]			

www.ti.com.cn

Bits	Field	Туре	Default	Description
7:0	BUCK_LOAD_ CURRENT[7:0]	R		This register describes 8 LSB bits of the average load current on selected regulator with a resolution of 10 mA per LSB and max 20 A current.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LP8758 is a multi-phase step-down converter with four switcher cores bundled together.

9.2 Typical Application

4-Phase configuration

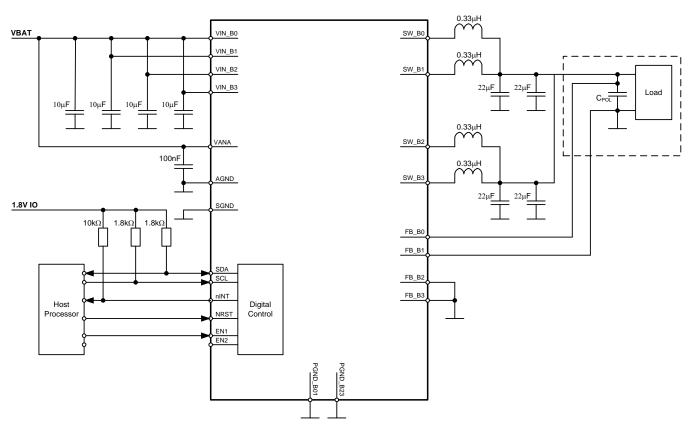


Figure 21. LP8758 Typical Application Circuit

9.2.1 Design Requirements

Table 6. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
Input voltage range	2.5 V to 5.5 V
Output voltage	1.1 V
Converter operation mode	Auto mode (PWM-PFM)
Maximum load current	16 A
Inductor current limit	5 A

9.2.2 Detailed Design Procedure

The performance of the LP8758 device depends greatly on the care taken in designing the printed circuit board (PCB). The use of low-inductance and low serial-resistance ceramic capacitors is strongly recommended, while proper grounding is crucial. Attention must be given to decoupling the power supplies. Decoupling capacitors must be connected close to the device and between the power and ground pins to support high peak currents being drawn from system power rail during turn-on of the switching MOSFETs. Keep input and output traces as short as possible, because trace inductance, resistance, and capacitance can easily become the performance limiting items. The separate power pins VIN_Bx are not connected together internally. The VIN_Bx power connections shall be connected together outside the package using power plane construction.

9.2.2.1 Application Components

9.2.2.1.1 Inductor Selection

DC bias current characteristics of inductors must be considered. Different manufacturers follow different saturation current rating specifications, so attention must be given to details. DC bias curves should be requested from them as part of the inductor selection process. Minimum effective value of inductance to ensure good performance is 0.22 μ H at 4-A bias current over the inductor's operating temperature range. The inductor's DC resistance should be less than 0.05 Ω for good efficiency at high current condition. The inductor AC loss (resistance) also affects conversion efficiency. Higher Q factor at switching frequency usually gives better efficiency at light load to middle load. See Table 7. Shielded inductors are preferred as they radiate less noise.

MANUFACTURER PART NUMBER **DIMENSIONS L×W×H VALUE** DCR (mΩ) (mm) TOKO DFE252010F-R33M 16 (typ), 21 (max) 0.33 µH $2.5 \times 2.0 \times 1.0$ **TDK** VLS252010HBX-R33M 0.33 µH $2.5 \times 2.0 \times 1.0$ 25 (typ), 31 (max) **TDK** VLS252010HBX-R47M $0.47 \mu H$ $2.5 \times 2.0 \times 1.0$ 29 (typ), 35 (max) **TDK** TFM2016GHM-0R47M $0.47 \, \mu H$ $2.0 \times 1.6 \times 1.0$ 46 (max) TOKO DFE322512C R47 0.47 µH $3.2 \times 2.5 \times 1.2$ 21 (typ), 31 (max)

Table 7. Recommended Inductors

9.2.2.1.2 Input Capacitor Selection

A ceramic input capacitor of 10 μ F, 6.3 V is sufficient for most applications. Place the power input capacitor as close as possible to the VIN_Bx pin and PGND_Bx pin of the device. A larger value or higher voltage rating may be used to improve input voltage filtering. Use X7R or X5R types, do not use Y5V or F. DC bias characteristics of ceramic capacitors must be considered when selecting case sizes like 0402. Minimum effective input capacitance to ensure good performance is 1.9 μ F per buck input at maximum input voltage DC bias including tolerances and over ambient temp range, assuming that there are at least 22 μ F of additional capacitance common for all the power input pins on the system power rail. See Table 8.

The input filter capacitor supplies current to the high-side FET switch in the first half of each cycle and reduces voltage ripple imposed on the input power source. A ceramic capacitor's low equivalent series resistance (ESR) provides the best noise filtering of the input voltage spikes due to this rapidly changing current. Select an input filter capacitor with sufficient ripple current rating.

The VANA input is used to supply analog and digital circuits in the device. See recommended components from Table 9 for VANA input supply filtering.

Table 8. Recommended Power Input Capacitors (X5R Dielectric)

MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L×W×H (mm)	VOLTAGE RATING	
Murata	GRM188R60J106ME47	10 μF (20%)	0603	$1.6 \times 0.8 \times 0.8$	6.3 V	

Table 9. Recommended VANA Supply Filtering Components

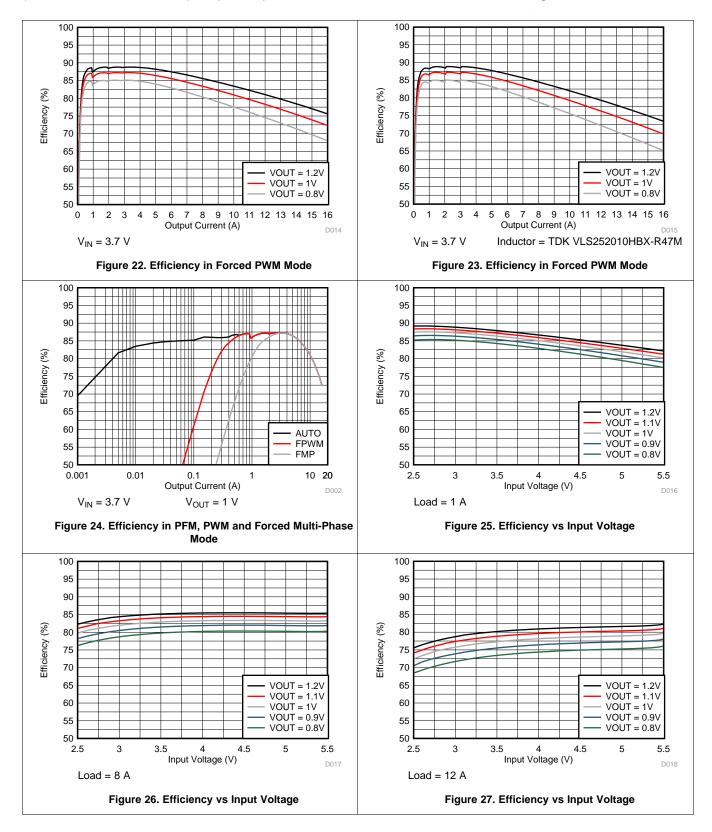
MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L×W×H (mm)	VOLTAGE RATING
Samsung	msung CL03A104KP3NNNC		0201	$0.6 \times 0.3 \times 0.3$	10 V
Murata	GRM033R61A104KE84	100 nF (10%)	0201	$0.6 \times 0.3 \times 0.3$	6.3 V

9.2.2.1.3 Output Capacitor Selection

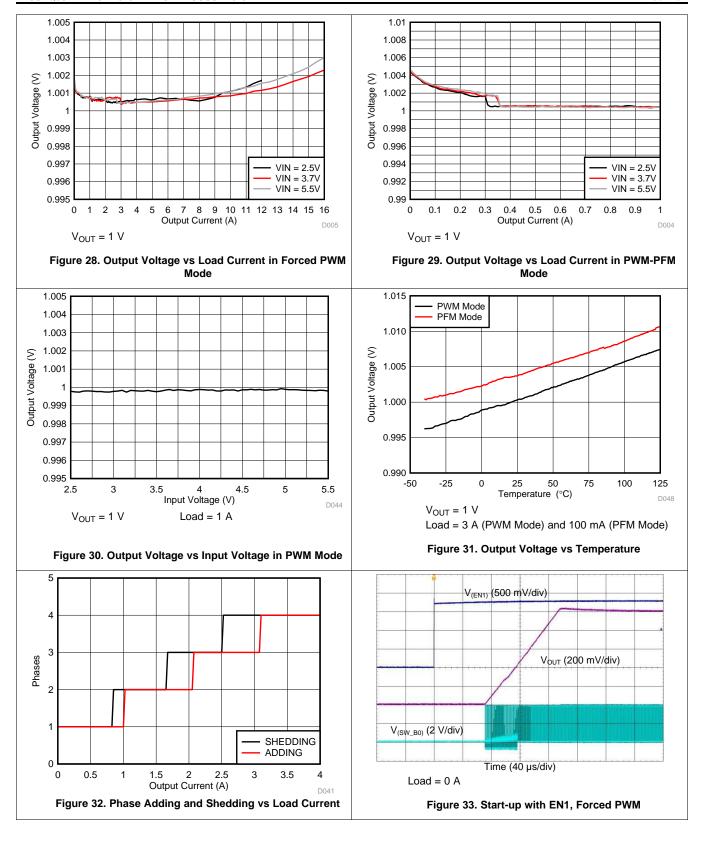
Use ceramic capacitors, X7R or X5R types; do not use Y5V or F. DC bias voltage characteristics of ceramic capacitors must be considered. DC bias characteristics vary from manufacturer to manufacturer, and DC bias curves should be requested from them as part of the capacitor selection process. The output filter capacitor smooths out current flow from the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR and ESL to perform these functions. Minimum effective output capacitance to ensure good performance is 10 μ F per phase at the output voltage DC bias including tolerances and over ambient temp range.

The output voltage ripple is caused by the charging and discharging of the output capacitor and also due to its R_{ESR}. The R_{ESR} is frequency dependent (as well as temperature dependent); make sure the value used for selection process is at the switching frequency of the part. See Table 10.

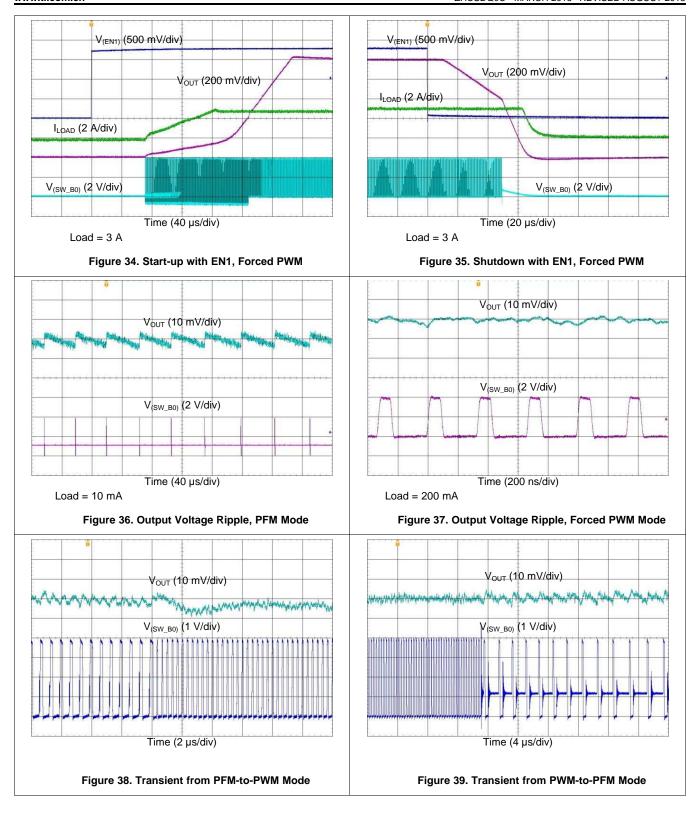
A higher output capacitance improves the load step behavior and reduces the output voltage ripple as well as decreases the PFM switching frequency. For most 4-phase applications 4 x 22 μ F 0603 capacitors for C_{OUT} are suitable. A point-of-load (POL) capacitance C_{POL} can be added with remove feedback as shown in Figure 21. Although a converter's loop compensation can be programmed to adapt to virtually several hundreds of microfarads C_{OUT}, it is preferable for C_{OUT} to be < 200 μ F (4-phase configuration). Choosing higher than that is not necessarily of any benefit. Note that the output capacitor may be the limiting factor in the output voltage ramp, especially for very large (> 100 μ F) output capacitors. For large output capacitors, the output voltage might be slower than the programmed ramp rate at voltage transitions, because of the higher energy stored on the output capacitance. Also at start-up, the time required to charge the output capacitor to target value might be longer. At shutdown, if the output capacitor is discharged by the internal discharge resistor, more time is required to settle V_{OUT} down as a consequence of the increased time constant.

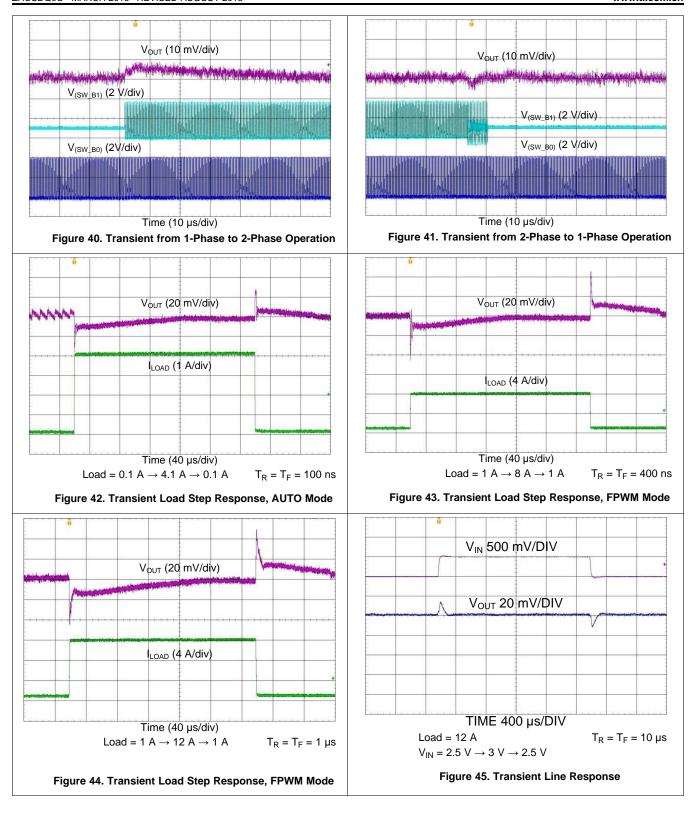

Table 10. Recommended Output Capacitors (X5R Dielectric)

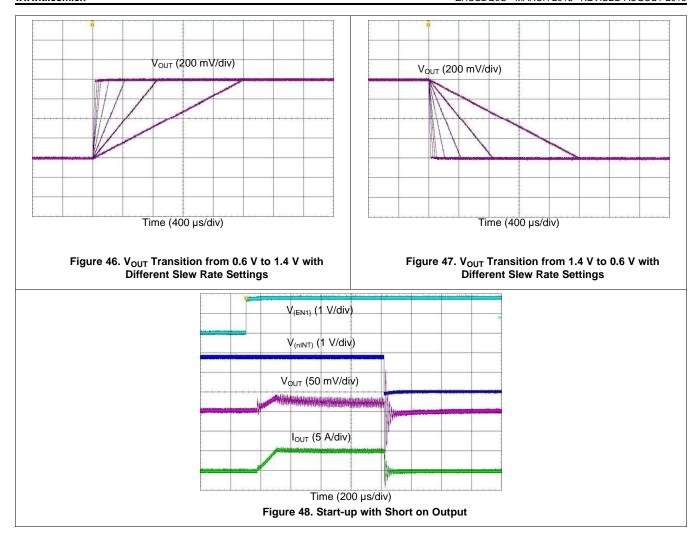
MANUFACTURER	PART NUMBER	VALUE	CASE SIZE	DIMENSIONS L×W×H (mm)	VOLTAGE RATING
Samsung	CL10A226MP8NUNE	22 µF (20%)	0603	$1.6 \times 0.8 \times 0.8$	10 V
Murata	GRM188R60J226MEA0	22 μF (20%)	0603	$1.6 \times 0.8 \times 0.8$	6.3 V



9.2.3 Application Curves


Unless otherwise specified: $V_{IN}=3.7$ V, $V_{OUT}=1$ V, $V_{(NRST)}=1.8$ V, $T_{A}=25$ °C, $f_{SW}=3$ MHz, L = 330 nH (TOKO DFE252010F-R33M), $C_{POL}=22~\mu F$. Measurements done with connections in Figure 21.





10 Power Supply Recommendations

The device is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input supply should be well-regulated and able to withstand maximum input current and maintain stable voltage without voltage drop even at load transition condition. The resistance of the input supply rail should be low enough that the input current transient does not cause too high drop in the LP8758 supply voltage that can cause false UVLO fault triggering. If the input supply is located more than a few inches from the LP8758 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.

11 Layout

11.1 Layout Guidelines

The high frequency and large switching currents of the LP8758 make the choice of layout important. Good power supply results only occur when care is given to proper design and layout. Layout affects noise pickup and generation and can cause a good design to perform with less-than-expected results. With a range of output currents from milliamps to 10 A and over, good power supply layout is much more difficult than most general PCB design. Use the following steps as a reference to ensure the device is stable and maintains proper voltage and current regulation across its intended operating voltage and current range.

- 1. Place C_{IN} as close to the VIN_Bx pin and the PGND_Bxx pin as possible. Route the V_{IN} trace wide and thick to avoid IR drops. The trace between the input capacitor's positive node and LP8758's VIN_Bx pin(s) as well as the trace between the input capacitor's negative node and power PGND_Bxx pin(s) must be kept as short as possible. The input capacitance provides a low-impedance voltage source for the switching converter. The inductance of the connection is the most important parameter of a local decoupling capacitor parasitic inductance on these traces must be kept as tiny as possible for proper device operation.
- 2. The output filter, consisting of L_x and C_{OUTx}, converts the switching signal at SW_Bx to the noiseless output voltage. Place the output filter as close to the device as possible, keeping the switch node small, for best EMI behavior. Route the traces between the LP8758's output capacitors and the load's input capacitors direct and wide to avoid losses due to the IR drop.
- 3. Input for analog blocks (VANA and AGND) must be isolated from noisy signals. Connect VANA directly to a quiet system voltage node and AGND to a quiet ground point where no IR drop occurs. Place the decoupling capacitor as close to the VANA pin as possible. VANA must be connected to the same power node as VIN_Bx pins.
- 4. If the processor load supports remote voltage sensing, connect the LP8758's feedback pins FB_Bx to the respective sense pins on the processor. The sense lines are susceptible to noise. They must be kept away from noisy signals such as PGND_Bxx, VIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I²C. Avoid both capacitive as well as inductive coupling by keeping the sense lines short, direct and close to each other. Run the lines in a quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible. TI recommends running the signal as a differential pair.
- 5. Route PGND_Bxx, VIN_Bx and SW_Bx on thick layers. They must not surround inner signal layers which are not able to withstand interference from noisy PGND_Bxx, VIN_Bx and SW_Bx.

Due to the small package of this converter and the overall small solution size, the thermal performance of the PCB layout is important. Many system-dependent issues such as thermal coupling, airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components affect the power dissipation limits of a given component. Proper PCB layout, focusing on thermal performance, results in lower die temperatures. Wide power traces come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB designs with vias to different planes. This results in reduced junction-to-ambient ($R_{\theta JA}$) and junction-to-board ($R_{\theta JB}$) thermal resistances, thereby reducing the device junction temperature, T_J . Performing a careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design process is strongly recommended, using a thermal modeling analysis software.

11.2 Layout Example

- O Via to GND plane
- Via to V_{IN} plane

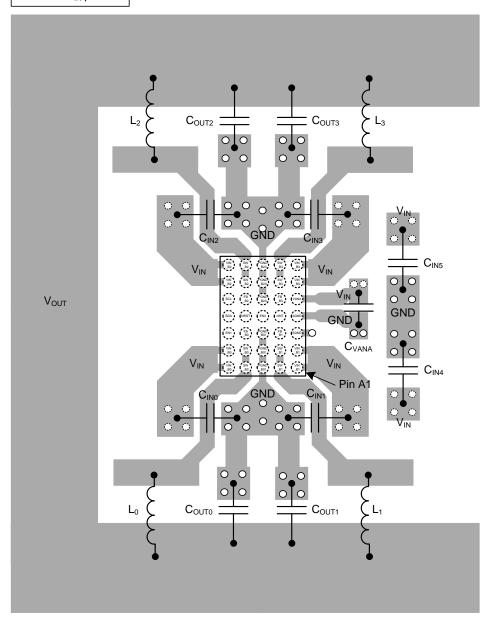


Figure 49. LP8758 Board Layout

12 器件和文档支持

12.1 器件支持

12.1.1 第三方产品免责声明

TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类 产品或服务单独或与任何TI产品或服务一起的表示或认可。

12.2 文档支持

12.2.1 相关文档

请参阅如下相关文档:

《AN-1112 DSBGA 晶圆级芯片级封装》

12.3 接收文档更新通知

要接收文档更新通知,请导航至 Tl.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

12.4 社区资源

下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商"按照原样"提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点:请参阅 TI 的 《使用条款》。

TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。

设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。

12.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

🕼 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

12.7 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、缩写和定义。

13 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2019 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
LP8758A1B0YFFR	ACTIVE	DSBGA	YFF	35	3000	RoHS & Green	SNAGCU	Level-1-260C-UNLIM	-40 to 85	8758A1B0	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

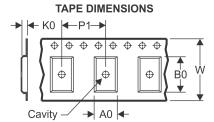
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

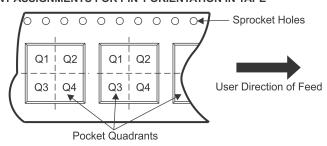
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

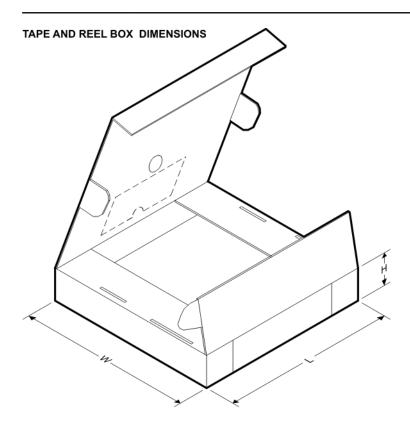

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Sep-2018


TAPE AND REEL INFORMATION

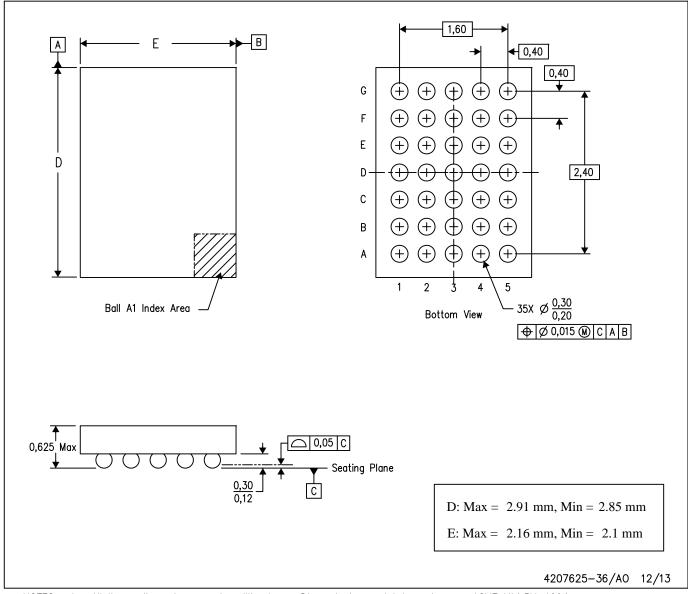
_		
		Dimension designed to accommodate the component width
	B0	Dimension designed to accommodate the component length
	K0	Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
ı	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LP8758A1B0YFFR	DSBGA	YFF	35	3000	180.0	8.4	2.28	3.03	0.74	4.0	8.0	Q1

www.ti.com 24-Sep-2018



*All dimensions are nominal

ĺ	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	LP8758A1B0YFFR	DSBGA	YFF	35	3000	182.0	182.0	20.0	

YFF (R-XBGA-N35)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

NanoFree is a trademark of Texas Instruments.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司