- Bus Transceivers/Registers

- Independent Registers and Enables for A and B Buses
- Multiplexed Real-Time and Stored Data
- Choice of True or Inverting Data Paths
- Choice of 3-State or Open-Collector Outputs to A Bus

DEVICE	A OUTPUT	B OUTPUT	LOGIC
SN74ALS651A, 'AS651	3-State	3-State	Inverting
SN54ALS652, SN74ALS652A, 'AS652	3-State	3-State	True
'ALS653	Open Collector	3-State	Inverting
SN74ALS654	Open Collector	3-State	True

description

These devices consist of bus-transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select-control (SAB and SBA) inputs are provided to select real-time or stored data transfer. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the octal bus transceivers and registers

SN54ALS', SN54AS' . . . JT PACKAGE
SN74ALS', SN74AS' . . . DW OR NT PACKAGE
(TOP VIEW)

SN54ALS', SN54AS' . . FK PACKAGE (TOP VIEW)

NC - No internal connection

Data on the A or B data bus, or both, can be stored in the internal D-type flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) terminals, regardless of the select- or output-control terminals. When SAB and SBA are in the real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. When all other data sources to the two sets of bus lines are at high impedance, each set of bus lines remains at its last state.
The - 1 versions of the SN74ALS651A and SN74ALS652A are identical to the standard versions except that the recommended maximum I_{OL} for the -1 versions is increased to 48 mA . There are no -1 versions of the SN54ALS652, SN54ALS653, SN74ALS653, and SN74ALS654.

Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

TA	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	PDIP - NT	Tube	SN74ALS651ANT	SN74ALS651ANT
			SN74ALS652ANT	SN74ALS652ANT
			SN74ALS653NT	SN74ALS653NT
			SN74ALS654NT	SN74ALS654NT
			SN74AS651NT	SN74AS651NT
			SN74AS652NT	SN74AS652NT
	SOIC - DW	Tube	SN74ALS651ADW	ALS651A
		Tape and reel	SN74ALS651ADWR	
		Tube	SN74ALS652ADW	ALS652A
		Tape and reel	SN74ALS652ADWR	
		Tube	SN74ALS653DW	ALS653
		Tape and reel	SN74ALS653DWR	
		Tube	SN74ALS654DW	ALS654
		Tape and reel	SN74ALS654DWR	
		Tube	SN74AS651DW	AS651
		Tape and reel	SN74AS651DWR	
		Tube	SN74AS652DW	AS652
		Tape and reel	SN74AS652DWR	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - JT	Tube	SNJ54ALS652JT	SNJ54ALS652JT
			SNJ54ALS653JT	SNJ54ALS653JT
			SNJ54AS651JT	SNJ54AS651JT
			SNJ54AS652JT	SNJ54AS652JT
	LCCC - FK	Tube	SNJ54ALS652FK	SNJ54ALS652FK
			SNJ54ALS653FK	SNJ54ALS653FK
			SNJ54AS651FK	SNJ54AS651FK
			SNJ54AS652FK	SNJ54AS652FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Pin numbers shown are for the DW, JT, and NT packages.
Figure 1. Bus-Management Functions

SN54ALS653, SN54AS651,
SN74ALS651A, SN74ALS653, SN74AS651

INPUTS						DATA I/O \dagger		OPERATION OR FUNCTION
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time \bar{B} data to A bus
L	L	X	H or L	X	H	Output	Input	Stored $\overline{\mathrm{B}}$ data to A bus
H	H	X	X	L	X	Input	Output	Real-time \bar{A} data to B bus
H	H	H or L	X	H	X		Output	Stored \bar{A} data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{A} data to B bus and stored \bar{B} data to A bus

\dagger The data output functions can be enabled or disabled by a variety of level combinations at OEAB or $\overline{\mathrm{OEBA}}$. Data input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L: clocks can occur simultaneously.
Select control = H: clocks must be staggered to load both registers.

SN54ALS652, SN54AS652,
SN74ALS652A, SN74ALS654, SN74AS652

INPUTS						DATA I/O \dagger		OPERATION OR FUNCTION
OEAB	$\overline{\text { OEBA }}$	CLKAB	CLKBA	SAB	SBA	A1-A8	B1-B8	
L	H	H or L	H or L	X	X	Input	Input	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified \ddagger	Store A, hold B
H	H	\uparrow	\uparrow	X \ddagger	X	Input	Output	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified \ddagger	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X \ddagger	Output	Input	Store B in both registers
L	L	X	X	X	L	Output	Input	Real-time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real-time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored A data to B bus and stored B data to A bus

\dagger The data output functions can be enabled or disabled by a variety of level combinations at OEAB or $\overline{\mathrm{OEBA}}$. Data input functions always are enabled; i.e., data at the bus terminals is stored on every low-to-high transition on the clock inputs.
\ddagger Select control = L: clocks can occur simultaneously.
Select control = H: clocks must be staggered to load both registers.

logic symbols \dagger

SN54ALS653, SN74ALS653

SN54ALS652, SN54AS652, SN74ALS652A, SN74AS652

SN74ALS654

\dagger These symbols are in accordance with ANSIIIEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DW, JT, and NT packages.

logic diagrams (positive logic)

Pin numbers shown are for the DW, JT, and NT packages.

SN54ALS652, SN54ALS653, SN54AS651, SN54AS652 SN74ALS651A, SN74ALS652A, SN74ALS653, SN74ALS654, SN74AS651, SN74AS652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC} -0.5 V to 7 V Input voltage range, V_{I} : Control inputs -0.5 V to 7 V
I/O ports . -0.5 V to 5.5 V
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 1): DW package . 46²C/W
NT package . $67^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions

\ddagger Applies only to the SN74ALS651A-1 and only if V_{CC} is maintained between 4.75 V and 5.25 V
recommended operating conditions

[^0]electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN74ALS651A			UNIT		
		MIN	TYP†	MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$1 \mathrm{l}=-18 \mathrm{~mA}$			-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.2				
		$\mathrm{I} \mathrm{OH}=-15 \mathrm{~mA}$	2						
VOL			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4	V	
		$\mathrm{IOL}=24 \mathrm{~mA}$			0.35	0.5			
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$,	$\mathrm{IOL}=48 \mathrm{~mA}$ (-1 versions)		0.35	0.5			
$!$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA		
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1			
$\mathrm{IIH}^{\text {H }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$		
	A or B ports \ddagger					20			
IIL	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2	mA		
	A or B ports \ddagger					-0.2			
IO§		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	mA		
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		42	68	mA		
		Outputs low		52	82				
		Outputs disabled		52	82				

[^1]\ddagger For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54ALS652			SN74ALS652A			UNIT		
		MIN	TYP \dagger	MAX	MIN	TYP \dagger	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \quad \mathrm{OH}=-0.4 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$			$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$			v		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{OH}=-3 \mathrm{~mA}$	2.4	3.2		2.4	3.2				
		$\mathrm{I}^{\mathrm{OH}}=-12 \mathrm{~mA}$	2									
		$\mathrm{I}^{\mathrm{OH}}=-15 \mathrm{~mA}$				2						
VOL			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	v	
		$\mathrm{IOL}=24 \mathrm{~mA}$						0.35	0.5			
		$\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \quad \mathrm{IOL}=48 \mathrm{~mA}$ (-1 versions)					0.35	0.5				
1	Control inputs		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{1}=7 \mathrm{~V}$	0.1			0.1			mA	
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1			0.1			
$\mathrm{IIH}^{\text {H }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
	A or B ports \ddagger					20			20			
IIL	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2			-0.2	mA		
	A or B ports \ddagger					-0.2			-0.2			
10 §		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-20		-112	-30		-112	mA		
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		47	76		47	76	mA		
		Outputs low		55	88		55	88				
		Outputs disabled		55	88		55	88				

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.

switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt } \\ & \hline \end{aligned}$		UNIT
			SN74	651A	
			MIN	MAX	
${ }_{\text {f max }}$			40		MHz
tPLH	CLKBA or CLKAB	A or B	8	32	ns
tPHL			5	17	
tPLH	A or B	B or A	2	18	ns
tpHL			2	10	
tPLH	SBA or SAB \ddagger (with A or B high)	A or B	8	38	ns
tPHL			6	21	
tPLH	SBA or SAB \ddagger (with A or B low)	A or B	8	25	ns
tPHL			7	21	
tPZH	$\overline{\text { OEBA }}$	A	3	20	ns
tPZL			5	18	
tPHZ	$\overline{O E B A}$	A	2	9	ns
tpLZ			3	12	
tPZH	OEAB	B	3	22	ns
tpZL			6	21	
tPHZ	OEAB	B	2	12	ns
tplZ			2	14	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.
switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAXt } \end{aligned}$				UNIT
			SN54ALS652		SN74ALS652A		
			MIN	MAX	MIN	MAX	
${ }_{\text {max }}$			35		40		MHz
tPLH	CLKBA or CLKAB	A or B	10	35	8	30	ns
tPHL			5	20	5	17	
tPLH	A or B	B or A	5	20	4	18	ns
tPHL			3	15	3	12	
tPLH	SBA or SAB \ddagger (with A or B high)	A or B	15	40	8	35	ns
tPHL			6	23	6	20	
tPLH	SBA or SAB \ddagger (with A or B low)	A or B	8	30	8	25	ns
tPHL			5	24	5	20	
tPZH	$\overline{\text { OEBA }}$	A	3	20	3	17	ns
tpZL			5	22	5	18	
tPHZ	$\overline{\text { OEBA }}$	A	1	12	1	10	ns
tplZ			2	20	2	16	
tPZH	OEAB	B	8	25	3	22	ns
tPZL			6	21	5	18	
tPHZ	OEAB	B	1	12	1	10	ns
tPLZ			2	21	2	16	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

```
Supply voltage range, V VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 V to 7 V
Input voltage range, V!: Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.5 V to 7 V
    I/O ports ................................................................ . . . . . . . . . V to 5.5 V
```



```
    NT package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67*
Storage temperature range, T}\mp@subsup{T}{\mathrm{ stg }}{\mathrm{ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - -65*}
\(\dagger\) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.
```

recommended operating conditions

			SN54ALS653			SN74ALS653			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
$\mathrm{V}_{\text {CC }}$	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
V_{IH}	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.7			0.8	V
V_{OH}	High-level output voltage	A ports			5.5			5.5	V
${ }^{\mathrm{I} \mathrm{OH}}$	High-level output current	B ports			-12			-15	mA
IOL	Low-level output current				12			24	mA
${ }^{\text {clock }}$	Clock frequency		0		25	0		35	MHz
t_{w}	Pulse duration	CLKBA or CLKAB high	20			14.5			ns
		CLKBA or CLKAB low	20			14.5			
$\mathrm{t}_{\text {su }}$	Setup time before CLKAB \uparrow or CLKBA \uparrow	A or B	15			10			ns
th	Hold time after CLKAB \uparrow or CLKBA \uparrow	A or B	5			0			ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

recommended operating conditions

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN5	54ALS6			4ALS6		UNIT		
		MIN	TYP \dagger	MAX	MIN	TYP \dagger	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2			-1.2	V
V_{OH}	B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA}$		$\mathrm{V}_{\mathrm{CC}}{ }^{-2}$			$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.2		2.4	3.2				
			$\mathrm{IOH}=-12 \mathrm{~mA}$	2								
			$\mathrm{I} \mathrm{OH}=-15 \mathrm{~mA}$				2					
VOL		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=12 \mathrm{~mA}$		0.25	0.4		0.25	0.4	V		
		$\mathrm{I}^{\mathrm{OL}}=24 \mathrm{~mA}$					0.35	0.5				
1	Control inputs		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1			0.1	mA	
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1			0.1			
${ }^{1} \mathrm{H}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20			20	$\mu \mathrm{A}$		
	A or B ports \ddagger					20			20			
	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2			-0.2	mA		
IL	A or B ports \ddagger					-0.2			-0.2			
${ }^{\mathrm{O}} \mathrm{OH}$	A ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			0.1			0.1	mA		
10 §	B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-20		-112	-30		-112	mA		
ICC		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		47	76		47	76	mA		
		Outputs low		55	88		55	88				
		Outputs disabled		55	88		55	88				

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters I_{IH} and I_{IL} include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN74ALS654			UNIT		
		MIN	TYPt	MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$			-1.2	V
V OH	B ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ,	$1 \mathrm{OH}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V		
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.4	3.2				
			$\mathrm{I} \mathrm{OH}=-15 \mathrm{~mA}$	2					
VOL		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{I} \mathrm{OL}=12 \mathrm{~mA}$		0.25	0.4	V		
		$\mathrm{IOL}=24 \mathrm{~mA}$		0.35	0.5				
1	Control inputs		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA	
	A or B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1			
${ }^{1} \mathrm{H}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$		
	A or B ports \ddagger					20			
IIL	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.2	mA		
	A or B ports \ddagger					-0.2			
${ }^{\mathrm{O}} \mathrm{OH}$	A ports	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{OH}}=5.5 \mathrm{~V}$			0.1	mA		
lo§	B ports	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$	-30		-112	mA		
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	Outputs high		47	76	mA		
		Outputs low		55	88				
		Outputs disabled		55	88				

[^2]\ddagger For I/O ports, the parameters $I_{I H}$ and $l_{I L}$ include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.
switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=680 \Omega \text { (A outputs), } \\ \mathrm{R} 1=\mathrm{R} 2=500 \Omega \text { (B outputs), } \\ \mathrm{T}_{\mathrm{A}}=\text { MIN to MAX } \dagger \\ \hline \end{array}$				UNIT
			SN54ALS653		SN74ALS653		
			MIN	MAX	MIN	MAX	
${ }_{\text {f max }}$			25		35		MHz
tPLH	CLKBA	A	16	71	16	64	ns
tPHL			6	24	6	22	
tPLH	CLKAB	B	10	35	10	30	ns
tPHL			5	20	5	17	
tPLH	A	B	5	20	5	18	ns
tphL			1.5	18	2	15	
tPLH	B	A	8	63	12	56	ns
tPHL			2	18	2	15	
tPLH	SBA \ddagger (with B high)	A	12	68	19	62	ns
tPHL			5	27	5	25	
tPLH	$\begin{gathered} \text { SBA } \ddagger \\ \text { (with B low) } \end{gathered}$	A	12	68	19	62	ns
tPHL			5	27	5	25	
tPLH	SAB \ddagger (with A high)	B	8	30	15	35	ns
tPHL			6	25	6	22	
tPLH	SAB \ddagger (with A low)	B	12	40	8	25	ns
tPHL			6	25	6	22	
tPLH	$\overline{\text { OEBA }}$	A	6	35	6	30	ns
tPHL			6	27	6	24	
tPZH	OEAB	B	7	25	8	22	ns
tPZL			6	25	6	22	
tPHZ	OEAB	B	1	16	1	14	ns
tPLZ			2	21	2	16	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.
switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=680 \Omega \text { (A outputs), } \\ & \mathrm{R} 1=\mathrm{R} 2=500 \Omega \text { (B outputs), } \\ & \mathrm{T}_{\mathrm{A}}=\text { MIN to MAX } \dagger \\ & \hline \end{aligned}$		UNIT
			SN74ALS654		
			MIN	MAX	
$\mathrm{f}_{\text {max }}$			35		MHz
tPLH	CLKBA	A	16	64	ns
tPHL			6	22	
tPLH	CLKAB	B	10	30	ns
tPHL			5	17	
tPLH	A	B	5	18	ns
tPHL			2	15	
tPLH	B	A	12	56	ns
tPHL			2	21	
tPLH	SBA \ddagger (with B low)	A	19	62	ns
tPHL			5	25	
tPLH	SBA \ddagger (with B high)	A	19	62	ns
tphL			5	25	
tPLH	SAB \ddagger (with A low)	B	15	35	ns
tPHL			6	22	
tPLH	SAB \ddagger (with A high)	B	8	25	ns
tPHL			6	22	
tPLH	$\overline{O E B A}$	A	6	30	ns
tPHL			6	24	
tPZH	OEAB	B	6	22	ns
tPZL			6	22	
tPHZ	OEAB	B	1	14	ns
tPLZ			2	16	

\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.

SN54ALS652, SN54ALS653, SN54AS651, SN54AS652 SN74ALS651A, SN74ALS652A, SN74ALS653, SN74ALS654, SN74AS651, SN74AS652 OCTAL BUS TRANSCEIVERS AND REGISTERS WITH 3-STATE OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Supply voltage range, } \mathrm{V}_{\mathrm{CC}} \\
& -0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Input voltage range, } \mathrm{V}_{\mathrm{F}} \text { : Control inputs . } 0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { I/O ports . } 0.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
& \text { Package thermal impedance, } \theta_{\text {JA }} \text { (see Note 1): DW package . 46} \mathrm{C} / \mathrm{W} \\
& \text { NT package } \\
& 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTE 1: The package thermal impedance is calculated in accordance with JESD } 51
\end{aligned}
$$

recommended operating conditions

			SN54AS651 SN54AS652			$\begin{aligned} & \text { SN74AS651 } \\ & \text { SN74AS652 } \end{aligned}$			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5	5.5	4.5	5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2			2			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8			0.8	V
${ }^{\mathrm{OH}}$	High-level output current				-12			-15	mA
l OL	Low-level output current				32			48	mA
${ }^{\text {f clock }}$	Clock frequency		0*		75*	0		90	MHz
t_{w}	Pulse duration	CLKBA or CLKAB high	6*			5			ns
		CLKBA or CLKAB low	7*			6			
$\mathrm{t}_{\text {su }}$	Setup time before CLKAB \uparrow or CLKBA \uparrow	A or B	7*			6			ns
$t_{\text {h }}$	Hold time after CLKAB \uparrow or CLKBA	A or B	0*			0			ns
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	0		70	${ }^{\circ} \mathrm{C}$

* On products compliant to MIL-PRF-38535, this parameter is based on characterized data but is not production tested.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\ddagger For I/O ports, the parameters l_{IH} and l_{IL} include the off-state output current.
§ The output conditions have been chosen to produce a current that closely approximates one-half of the true short-circuit output current, IOS.
switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R} 1=500 \Omega, \\ & \mathrm{R} 2=500 \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=\operatorname{MIN} \text { to MAX } \dagger \end{aligned}$				UNIT
			SN54AS651		SN74AS651		
			MIN	MAX	MIN	MAX	
$f_{\text {max }}$			75*		90		MHz
tPLH	CLKBA or CLKAB	A or B	2	11	2	8.5	ns
tPHL			2	10	2	9	
tPLH	A or B	B or A	2	12	2	8	ns
tPHL			1	8	1	7	
tPLH	SBA or SAB \ddagger	A or B	2	15	2	11	ns
tPHL			2	11	2	9	
tPZH	$\overline{\text { OEBA }}$	A	2	11	2	10	ns
tPZL			3	18	3	16	
tPHZ	$\overline{\text { OEBA }}$	A	2	10	2	9	ns
tPLZ			2	10	2	9	
tPZH	OEAB	B	3	12	3	11	ns
tPZL			3	20	3	16	
tPHZ	OEAB	B	2	11	2	10	ns
tPLZ			2	12	2	11	

[^3]
switching characteristics (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \text { TO } 5.5 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{PF}, \\ \mathrm{R} 1=500 \Omega, \\ \mathrm{R} 2=500 \Omega, \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{MIN} \text { TO MAXt } \end{gathered}$				UNIT
			SN54AS652		SN74AS652		
			MIN	MAX	TYP	MAX	
$f_{\text {max }}$			75*		90		MHz
tPLH	CLKBA or CLKAB	A or B	2	11	2	8.5	ns
tPHL			2	10	2	9	
tPLH	A or B	B or A	2	12	2	9	ns
tPHL			1	8	1	7	
tPLH	SBA or SAB \ddagger	A or B	2	15	2	11	ns
tPHL			2	11	2	9	
tPZH	$\overline{O E B A}$	A	2	11	2	10	ns
tPZL			3	18	3	16	
tPHZ	$\overline{\text { OEBA }}$	A	2	10	2	9	ns
tpLZ			2	10	2	9	
tPZH	OEAB	B	3	12	3	11	ns
tPZL			3	20	3	16	
tPHZ	OEAB	B	2	11	2	10	ns
tpLZ			2	12	2	11	

* On products compliant to MIL-PRF-38535, this parameter is based on characterized data but is not production tested.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR 3-STATE OUTPUTS

VOLTAGE WAVEFORMS SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES

SWITCH POSITION TABLE

TEST	S1
tPLH	Open
tPHL	Open
tPZH	Open
tPZL	Closed
tPHZ	Open
tPLZ	Closed

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

TEXAS
PACKAGE OPTION ADDENDUM
INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-88673013A	ACTIVE	LCCC	FK	28	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & 5962- \\ & 88673013 A \\ & \text { SNJ54ALS } \\ & \text { 652FK } \end{aligned}$	Samples
5962-8867301LA	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8867301LA SNJ54ALS652JT	Samples
5962-8868701LA	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8868701LA SNJ54AS652JT	Samples
5962-89687013A	ACTIVE	LCCC	FK	28	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \hline 5962- \\ & \text { 89687013A } \\ & \text { SNJ54ALS } \\ & \text { 653FK } \end{aligned}$	Samples
5962-8968701LA	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8968701LA SNJ54ALS653JT	Samples
SN54ALS652JT	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	SN54ALS652JT	Samples
SN54AS652JT	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	SN54AS652JT	Samples
SN74ALS652A-1DW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS652A-1	Samples
SN74ALS652ADW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS652A	Samples
SN74ALS652ADWR	ACTIVE	SOIC	DW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS652A	Samples
SN74ALS653DW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS653	Samples
SN74ALS653DWE4	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS653	Samples
SN74ALS654DW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS654	Samples
SN74AS652DW	ACTIVE	SOIC	DW	24	25	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	AS652	Samples
SNJ54ALS652FK	ACTIVE	LCCC	FK	28	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 88673013A } \\ & \text { SNJ54ALS } \\ & \text { 652FK } \end{aligned}$	Samples

INSTRUMENTS

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
SNJ54ALS652JT	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-8867301LA } \\ & \text { SNJ54ALS652JT } \end{aligned}$	Samples
SNJ54ALS653FK	ACTIVE	LCCC	FK	28	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962- } \\ & \text { 89687013A } \\ & \text { SNJ54ALS } \\ & 653 F K \end{aligned}$	Samples
SNJ54ALS653JT	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8968701LA SNJ54ALS653JT	Samples
SNJ54AS652JT	ACTIVE	CDIP	JT	24	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8868701LA SNJ54AS652JT	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of $<=1000 \mathrm{ppm}$ threshold. Antimony trioxide based flame retardants must also meet the $<=1000 \mathrm{ppm}$ threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54ALS653, SN54AS652, SN74ALS653, SN74AS652 :

- Catalog : SN74ALS653, SN74AS652
- Military : SN54ALS653, SN54AS652

NOTE: Qualified Version Definitions

- Catalog - TI's standard catalog product
- Military - QML certified for Military and Defense Applications

TeXAS

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
SN74ALS652ADWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length $(\mathbf{m m})$	Width $(\mathbf{m m})$	Height (mm)
SN74ALS652ADWR	SOIC	DW	24	2000	350.0	350.0	43.0

TUBE

B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W $(\mathbf{m m})$	T $(\boldsymbol{\mu m})$	B (mm)
SN74ALS652A-1DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ALS652ADW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ALS653DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ALS653DWE4	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74ALS654DW	DW	SOIC	24	25	506.98	12.7	4826	6.6
SN74AS652DW	DW	SOIC	24	25	506.98	12.7	4826	6.6

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. Falls within JEDEC MS-004

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

[^0]: \ddagger Applies only to the SN74ALS652A-1 and only if V_{CC} is maintained between 4.75 V and 5.25 V

[^1]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^2]: \dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

[^3]: * On products compliant to MIL-PRF-38535, this parameter is based on characterized data but is not production tested.
 \dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
 \ddagger These parameters are measured with the internal output state of the storage register opposite that of the bus input.

