SN74SSTVF16857 14-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND OUTPUTS SCES411B – AUGUST 2002 – REVISED APRIL 2003

 Member of the Texas Instruments	DGG PACKAGE
Widebus™ Family	(TOP VIEW)
 Operates at 2.3 V to 2.7 V for PC1600,	Q1 [1 48] D1
PC2100, and PC2700; 2.5 V to 2.7 V for	Q2 [2 47] D2
PC3200	GND [3 46] GND
 Pinout and Functionality Compatible With	V_{DDQ} [4 45] V_{CC}
JEDEC Standard SSTV16857	Q3 [5 44] D3
 600 ps Faster (Simultaneous Switching)	Q4 [6 43] D4
Than JEDEC Standard SSTV16857 in	Q5 [7 42] D5
PC2700 DIMM Applications	GND [8 41] D6
 Output Edge-Control Circuitry Minimizes	V _{DDQ} [] 9 40 [] D7
Switching Noise in Unterminated DIMM	Q6 [] 10 39 [] CLK
Load	Q7 [] 11 38 [] CLK
 Outputs Meet SSTL_2 Class I	V _{DDQ} [] 12 37 [] V _{CC}
Specifications	GND [] 13 36 [] GND
 Supports SSTL_2 Data Inputs 	
 Differential Clock (CLK and CLK) Inputs 	Q9 [] 15 34 [] RESET V _{DDQ} [] 16 33 [] D8
 Supports LVCMOS Switching Levels on the	GND [17 32] D9
RESET Input	Q10 [18 31] D10
 RESET Input Disables Differential Input	Q11 [] 19 30 [] D11
Receivers, Resets All Registers, and	Q12 [] 20 29 [] D12
Forces All Outputs Low	V_{DDQ} 21 28 V_{CC}
 Flow-Through Architecture Optimizes PCB 	GND 22 27 GND Q13 23 26 D13
Layout	Q13 [[23 26]] D13 Q14 [[24 25]] D14
 Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 	

- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This 14-bit registered buffer is designed for 2.3-V to 2.7-V V_{CC} operation.

All inputs are SSTL_2, except the LVCMOS reset (RESET) input. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_2 Class I specifications.

The SN74SSTVF16857 operates from a differential clock (CLK and CLK). Data are registered at the crossing of CLK going high and CLK going low.

ORDERING INFORMATION

TA	PACKA	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
0°C to 70°C	TSSOP – DGG	Tape and reel	SN74SSTVF16857GR	SSTVF16857

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

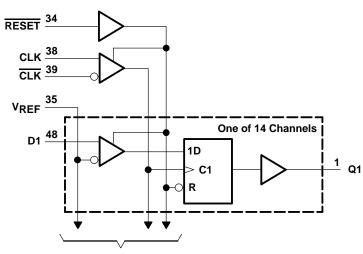
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated

SN74SSTVF16857 **14-BIT REGISTERED BUFFER** WITH SSTL 2 INPUTS AND OUTPUTS

SCES411B - AUGUST 2002 - REVISED APRIL 2003

description/ordering information (continued)


The device supports low-power standby operation. When RESET is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET is low, all registers are reset, and all outputs are forced low. The LVCMOS RESET input always must be held at a valid logic high or low level.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

T UNCTION TABLE											
	IN	IPUTS		OUTPUT							
RESET	CLK	CLK	D	Q							
Н	\uparrow	\downarrow	Н	Н							
Н	\uparrow	\downarrow	L	L							
Н	L or H	L or H	Х	Q ₀							
L	X, or floating	X, or floating	X, or floating	L							

FUNCTION TABLE

logic diagram (positive logic)

To 13 Other Channels

SN74SSTVF16857 **14-BIT REGISTERED BUFFER** WITH SSTL 2 INPUTS AND OUTPUTS

SCES411B - AUGUST 2002 - REVISED APRIL 2003

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. This value is limited to 3.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		V _{DDQ}		2.7	V
	2 · · · · ·	PC1600, PC2100, PC2700	2.3		2.7	
VDDQ	Output supply voltage	PC3200	2.5		2.7	V
		PC1600, PC2100, PC2700	1.15	1.25	1.35	
VREF	Reference voltage ($V_{REF} = V_{DDQ}/2$)	PC3200	1.25	1.3	1.35	V
VI	Input voltage		0		VCC	V
V_{IH}	AC high-level input voltage	Data inputs	V _{REF} +310mV			V
V_{IL}	AC low-level input voltage	Data inputs			V _{REF} -310mV	V
VIH	DC high-level input voltage	Data inputs	VREF+150mV			V
VIL	DC low-level input voltage	Data inputs			VREF-150mV	V
VIH	High-level input voltage	RESET	1.7			V
V_{IL}	Low-level input voltage	RESET			0.7	V
VICR	Common-mode input voltage range	CLK, CLK	0.97		1.53	V
V _{I(PP)}	Peak-to-peak input voltage	CLK, CLK	360			mV
ЮН	High-level output current	•			-16	mA
IOL	Low-level output current				16	mA
TA	Operating free-air temperature		0		70	°C

NOTE 4: The RESET input of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The differential inputs must not be floating unless RESET is low. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74SSTVF16857 **14-BIT REGISTERED BUFFER** WITH SSTL 2 INPUTS AND OUTPUTS SCES411B – AUGUST 2002 – REVISED APRIL 2003

electrical characteristics for PC1600, PC2100, and PC2700 over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		V _{CC} AND V _{DDQ}	MIN	түр†	МАХ	UNIT	
VIK		I _I = -18 mA		2.3 V			-1.2	V	
M		I _{OH} = -100 μA	2.3 V to 2.7 V	V _{DDQ} -	0.2				
VOH		I _{OH} = -8 mA		2.3 V	1.95			V	
		I _{OL} = 100 μA		2.3 V to 2.7 V			0.2		
V _{OL}		I _{OL} = 8 mA	2.3 V			0.35	V		
lj –	All inputs	$V_{I} = V_{CC}$ or GND		2.7 V			±5	μΑ	
	Static standby	RESET = GND		0.714			10	μA	
ICC	Static operating	$RESET = V_{CC}, V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	I ^O = 0	2.7 V		8	25	mA	
	Dynamic operating – clock only	$\begin{tabular}{l} \hline $RESET$ = V_{CC}, $V_I = $V_{IH}(AC)$ or $V_{IL}(AC)$, CLK and CLK switching 50% duty cycle V_{CL} or $V_{IL}(AC)$. The second se$				28		μΑ/ MHz	
ICCD	Dynamic operating – per each data input	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	I <mark>O</mark> = 0	2.5 V		7		μΑ/ clock MHz/ D input	
	Data inputs	$V_I = V_{REF} \pm 310 \text{ mV}$			2.5	3	3.5		
Ci	CLK, CLK	VICR = 1.25 V, VI(PP) = 360mV		2.5 V	2.5	3	3.5	pF	
	RESET	$V_I = V_{CC}$ or GND]	2.3	3	3.5		

[†] All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

electrical characteristics for PC3200 over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TEST CONDITIONS					UNIT	
VIK		IJ = -18 mA		2.5 V			-1.2	V	
I _{OH} = -100 μA				2.5 V to 2.7 V	VDDQ-	0.2			
VOH		I _{OH} = -8 mA		2.5 V	1.95			V	
		I _{OL} = 100 μA		2.5 V to 2.7 V			0.2		
V _{OL}		I _{OL} = 8 mA	2.5 V			0.35	V		
lj	All inputs	$V_{I} = V_{CC} \text{ or } GND$		2.7 V			±5	μA	
	Static standby	RESET = GND		0.71/			10	μA	
ICC	Static operating	$\overline{\text{RESET}} = V_{CC}, V_I = V_{IH(AC)} \text{ or } V_{IL(AC)}$	IO = 0	2.7 V		8	25	mA	
	Dynamic operating – clock only	$\frac{\text{RESET}}{\text{CLK}} = \frac{V_{CC}}{V_{I}}, V_{I} = V_{IH(AC)} \text{ or } V_{IL(AC)},$ CLK and CLK switching 50% duty cycle				28		μΑ/ MHz	
ICCD	Dynamic operating – per each data input	$\label{eq:RESET} \begin{array}{l} \overline{\text{RESET}} = V_{CC}, \ \text{VI} = \text{VIH(AC)} \ \text{or VIL(AC)}, \\ \text{CLK and CLK switching 50\% duty cycle}, \\ \text{One data input switching at} \\ \text{one-half clock frequency, 50\% duty cycle} \end{array}$	I ^O = 0	2.6 V		7		μΑ/ clock MHz/ D input	
	Data inputs	VI = V _{REF} ± 310 mV			2.5	3	3.5		
Ci	CLK, CLK	V _{ICR} = 1.25 V, V _{I(PP)} = 360mV		2.6 V	2.5	3	3.5	pF	
	RESET	$V_I = V_{CC}$ or GND			2.3	3	3.5		

[†] All typical values are at V_{CC} = 2.6 V, T_A = 25°C.

SN74SSTVF16857 **14-BIT REGISTERED BUFFER** WITH SSTL 2 INPUTS AND OUTPUTS SCES411B – AUGUST 2002 – REVISED APRIL 2003

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				V _{CC} = ± 0.2		V _{CC} = ± 0.1	2.6 V V†	UNIT
				MIN	MAX	MIN	MAX	
fclock	Clock frequency			250		250	MHz	
tw	Pulse duration, C	LK, CLK high or low	2		2		ns	
^t act	Differential inputs	active time (see Note 5)		22		22	ns	
^t inact	Differential inputs	inactive time (see Note 6)			22		22	ns
	O share times	Fast slew rate (see Notes 7 and 9)		0.75		0.75		
t _{su}	Setup time	Slow slew rate (see Notes 8 and 9)	Data before CLK [↑] , \overline{CLK}	0.9		0.9		ns
4	th Hold time	Fast slew rate (see Notes 7 and 9)		0.75		0.75		
th		Slow slew rate (see Notes 8 and 9)	Data after CLK \uparrow , $\overline{CLK}\downarrow$	0.9		0.9		ns

[†] For this test condition, V_{DDQ} always is equal to V_{CC} .

NOTES: 5. VREF must be held at a valid input level and data inputs must be held low for a minimum time of tact max, after RESET is taken high.

6. VREF, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of tinact max, after RESET is taken low.

7. For data signal input slew rate ≥ 1 V/ns.

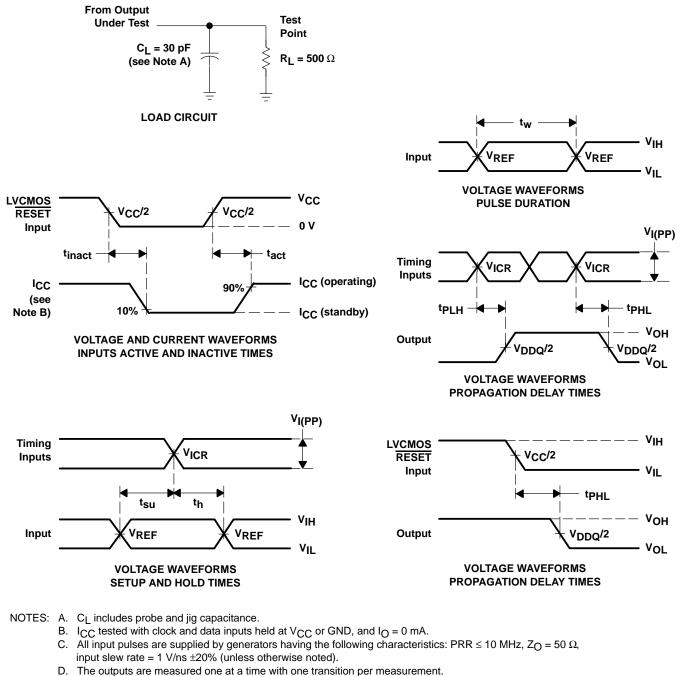
8. For data signal input slew rate ≥0.5 V/ns and <1 V/ns.

9. CLK, CLK signals input slew rates are ≥ 1 V/ns.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO	V _{CC} = ± 0.2	2.5 V 2 V†	V _{CC} = 2.6 V ± 0.1 V [†]		UNIT
	(INFOT)	(OUTPUT)	MIN	MAX	MIN	MAX	
f _{max}			250		250		MHz
t _{pd} ‡	CLK and CLK	Q	1.1	2.6	1.1	2.6	ns
^t PHL	RESET	Q		5		5	ns

[†] For this test condition, V_{DDQ} always is equal to V_{CC}.


[‡] Single bit switching

SN74SSTVF16857 14-BIT REGISTERED BUFFER WITH SSTL_2 INPUTS AND OUTPUTS

SCES411B – AUGUST 2002 – REVISED APRIL 2003

PARAMETER MEASUREMENT INFORMATION

- E. $V_{REF} = V_{DDQ}/2$
- F. $V_{IH} = V_{REF} + 310 \text{ mV}$ (ac voltage levels) for differential inputs. $V_{IH} = V_{CC}$ for LVCMOS input.
- G. $V_{IL} = V_{REF} 310 \text{ mV}$ (ac voltage levels) for differential inputs. $V_{IL} = GND$ for LVCMOS input.
- H. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
HPA00024GR	ACTIVE	TSSOP	DGG	48	2000	TBD	Call TI	Call TI	0 to 70		Samples
SN74SSTVF16857GR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	0 to 70	SSTVF16857	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

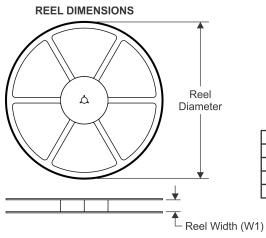
⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

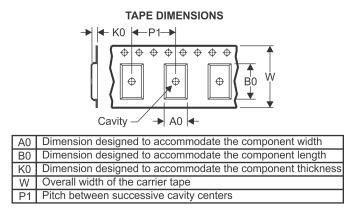
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

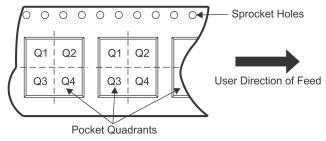
www.ti.com

PACKAGE OPTION ADDENDUM


15-Jul-2022

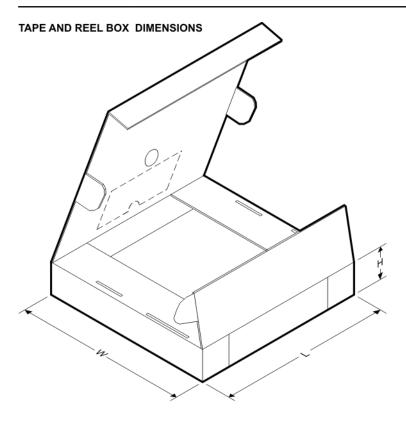

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

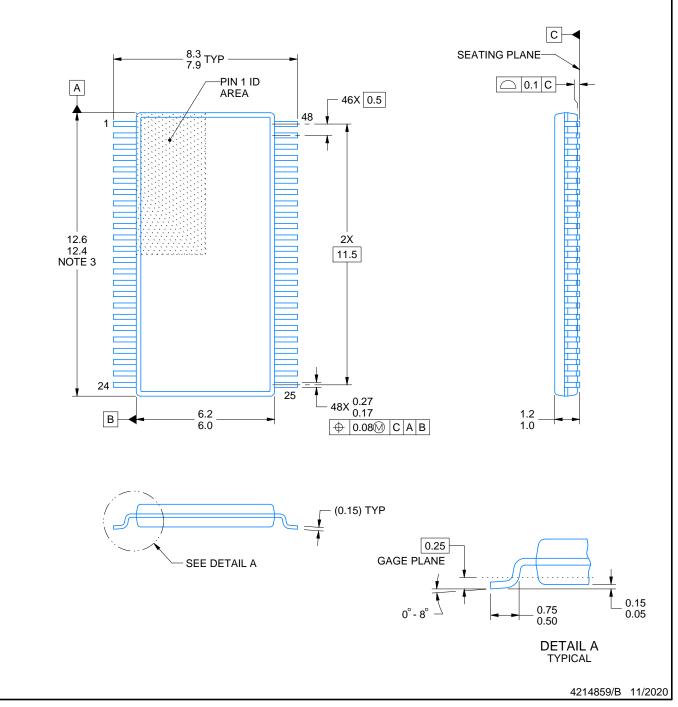

*All dimensions are nominal												
Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74SSTVF16857GR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

12-May-2017


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74SSTVF16857GR	TSSOP	DGG	48	2000	367.0	367.0	45.0	

PACKAGE OUTLINE

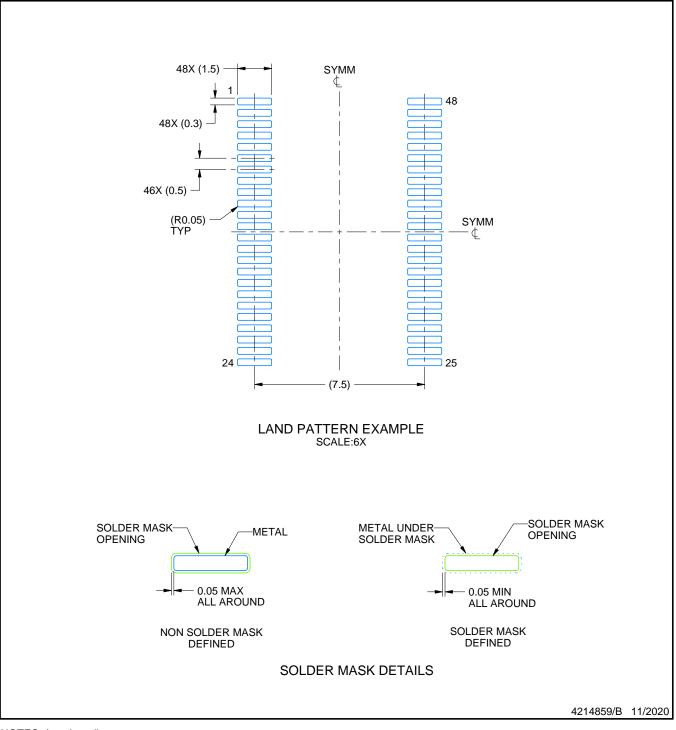
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

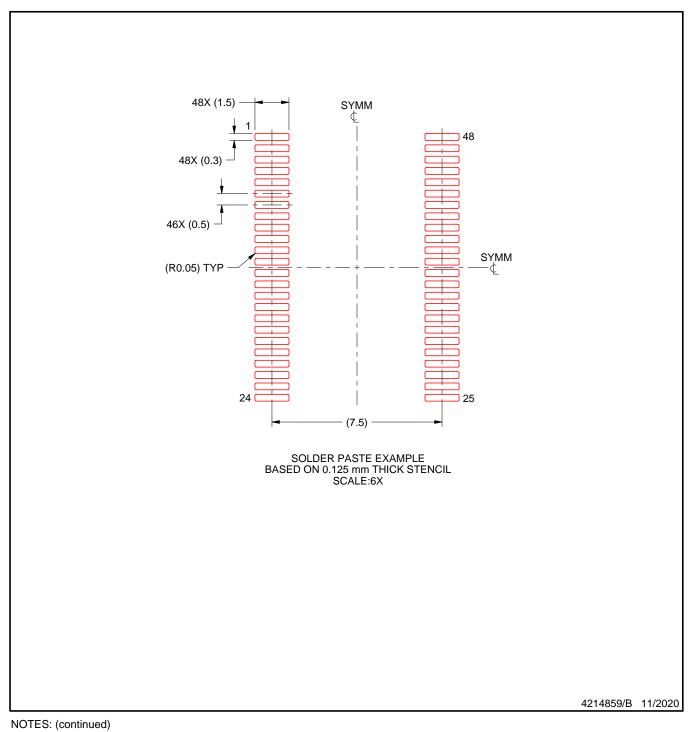
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

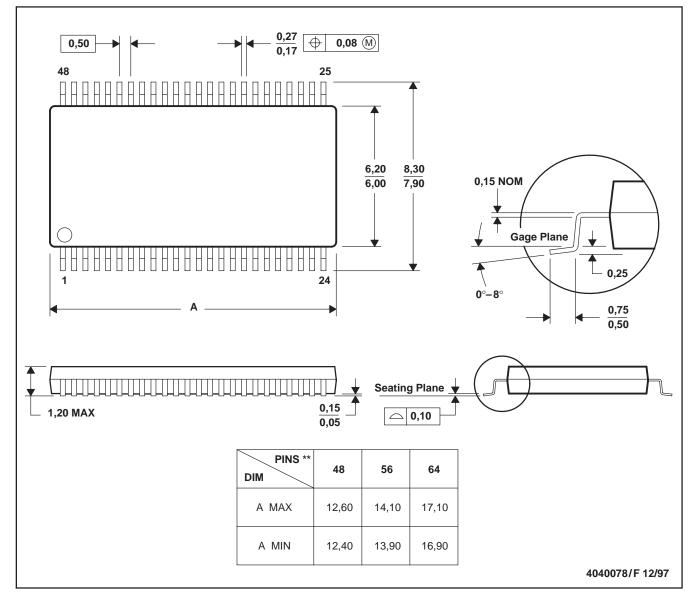
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated